001     878073
005     20240709081928.0
024 7 _ |a 10.1016/j.apenergy.2020.116191
|2 doi
024 7 _ |a 0306-2619
|2 ISSN
024 7 _ |a 1872-9118
|2 ISSN
024 7 _ |a 2128/27177
|2 Handle
024 7 _ |a WOS:000613288200008
|2 WOS
037 _ _ |a FZJ-2020-02615
082 _ _ |a 620
100 1 _ |a Zou, Wei
|0 P:(DE-Juel1)171395
|b 0
|e Corresponding author
245 _ _ |a Working Zone for a Least Squares Support Vector Machine in the Modeling of Polymer Electrolyte Fuel Cell Voltage
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1613481218_22800
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The least squares support vector machine method has been successfully applied to modeling the transient behavior of polymer electrolyte fuel cells; this paper analyzes the credibility and definition of its reliable working zone when dealing with multiple load changes. The transient model based on the least squares support vector machine is initially established. Then, the effects of the fuel cell system’s setup and exterior load behavior on the transient model are investigated. Artificial data from experimentally-validated Simulink simulations are used, by which extreme working conditions could be taken into account. We found that the fuel cell system’s setup with intensive sampling brings about better model performance than that with a sparse sampling interval, as sharp peaks are well characterized when intensive sampling is applied and more information on the fuel cell system is provided to the transient model. Furthermore, the performance of the transient model is better when smoother load changes are imposed on the system, and so a large ramp time and small ramp value are preferable. A working zone for a least squares support vector machine to model polymer electrolyte fuel cell is defined, for which an absolute error is used. Based on the acceptable level of error in the fuel cell system, a set of feasible combinations of its setup and exterior load changes is regulated. Accuracy in the transient model is achieved when the fuel cell runs within the working domain.
536 _ _ |a 123 - Chemische Energieträger (POF4-123)
|0 G:(DE-HGF)POF4-123
|c POF4-123
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Froning, Dieter
|0 P:(DE-Juel1)5106
|b 1
700 1 _ |a Shi, Yan
|0 P:(DE-Juel1)171458
|b 2
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 3
773 _ _ |a 10.1016/j.apenergy.2020.116191
|g Vol. 283, p. 116191 -
|0 PERI:(DE-600)2000772-3
|p 116191 -
|t Applied energy
|v 283
|y 2021
|x 0306-2619
856 4 _ |u https://juser.fz-juelich.de/record/878073/files/Zou_Wei_Working%20zone%20for%20a%20least-square%20supoort%20vector%20machine%20for%20modeling%20polymer%20elctrolyte%20fuel%20cell%20voltage.pdf
|y Published on 2020-12-01. Available in OpenAccess from 2022-12-01.
909 C O |o oai:juser.fz-juelich.de:878073
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171395
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)171395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)5106
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171458
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)129883
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Fuel Cells
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-12
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ENERG : 2018
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL ENERG : 2018
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21