000878074 001__ 878074
000878074 005__ 20210130005354.0
000878074 0247_ $$2doi$$a10.1016/j.mri.2020.07.003
000878074 0247_ $$2ISSN$$a0730-725X
000878074 0247_ $$2ISSN$$a1873-5894
000878074 0247_ $$2Handle$$a2128/25554
000878074 0247_ $$2pmid$$apmid:32653426
000878074 0247_ $$2WOS$$aWOS:000566701900014
000878074 037__ $$aFZJ-2020-02616
000878074 082__ $$a610
000878074 1001_ $$0P:(DE-Juel1)164356$$aChoi, Chang-Hoon$$b0$$eCorresponding author$$ufzj
000878074 245__ $$aThe state-of-the-art and emerging design approaches of double-tuned RF coils for X-nuclei, brain MR imaging and spectroscopy: A review
000878074 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000878074 3367_ $$2DRIVER$$aarticle
000878074 3367_ $$2DataCite$$aOutput Types/Journal article
000878074 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599479901_14754
000878074 3367_ $$2BibTeX$$aARTICLE
000878074 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878074 3367_ $$00$$2EndNote$$aJournal Article
000878074 520__ $$aWith the increasing availability of ultra-high field MRI systems, studying non-proton nuclei (X-nuclei), such as 23Na and 31P has received great interest. X-nuclei are able to provide insight into important cellular processes and energy metabolism in tissues and by monitoring these nuclei closely it is possible to establish links to pathological conditions and neurodegenerative diseases. In order to investigate X-nuclei, a well-designed radiofrequency (RF) system with a multi-tuned RF coil is required. However, as the intrinsic sensitivity of non-proton nuclei is lower compared to 1H, it is important to ensure that the signal-to-noise ratio (SNR) of the X-nuclei is as high as possible. This review aims to give a comprehensive overview of previous efforts, with particular focus on the design concept of multi-tuned coils, predominantly for brain applications. In order to guide the readers, the main body of the review is categorised into two parts: state-of-the art according to the single or multiple design structures and emerging technologies. A more detailed description is given in each subsection relating to the specific design approaches of, mostly, double-tuned coils, including using traps, PIN-diodes, nested and metamaterial, together with explanations of their novelties, optimal solutions and trade-offs.
000878074 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000878074 588__ $$aDataset connected to CrossRef
000878074 7001_ $$0P:(DE-Juel1)164150$$aHong, Suk-Min$$b1$$ufzj
000878074 7001_ $$0P:(DE-Juel1)131761$$aFelder, Jörg$$b2$$ufzj
000878074 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b3$$ufzj
000878074 773__ $$0PERI:(DE-600)1500646-3$$a10.1016/j.mri.2020.07.003$$gVol. 72, p. 103 - 116$$p103 - 116$$tMagnetic resonance imaging$$v72$$x0730-725X$$y2020
000878074 8564_ $$uhttps://juser.fz-juelich.de/record/878074/files/2020_Choi_MRI-2.pdf
000878074 8564_ $$uhttps://juser.fz-juelich.de/record/878074/files/Post_print-2020_Choi_3108.pdf$$yPublished on 2020-07-09. Available in OpenAccess from 2021-07-09.
000878074 8564_ $$uhttps://juser.fz-juelich.de/record/878074/files/2020_Choi_MRI-2.pdf?subformat=pdfa$$xpdfa
000878074 909CO $$ooai:juser.fz-juelich.de:878074$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878074 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164356$$aForschungszentrum Jülich$$b0$$kFZJ
000878074 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164150$$aForschungszentrum Jülich$$b1$$kFZJ
000878074 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131761$$aForschungszentrum Jülich$$b2$$kFZJ
000878074 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
000878074 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000878074 9141_ $$y2020
000878074 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000878074 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000878074 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17
000878074 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878074 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON IMAGING : 2018$$d2020-01-17
000878074 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000878074 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-17
000878074 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000878074 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000878074 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17
000878074 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-17
000878074 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000878074 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-01-17
000878074 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-17$$wger
000878074 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000878074 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000878074 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000878074 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000878074 980__ $$ajournal
000878074 980__ $$aVDB
000878074 980__ $$aUNRESTRICTED
000878074 980__ $$aI:(DE-Juel1)INM-4-20090406
000878074 980__ $$aI:(DE-Juel1)INM-11-20170113
000878074 980__ $$aI:(DE-Juel1)VDB1046
000878074 9801_ $$aFullTexts