000878078 001__ 878078
000878078 005__ 20240708132934.0
000878078 037__ $$aFZJ-2020-02620
000878078 1001_ $$0P:(DE-Juel1)179587$$aLi, Jiarong$$b0$$eCorresponding author
000878078 245__ $$aOptimal Configuration of Wind-to-Ammonia with the Electric Network and Hydrogen Supply Chain: A Case Study of Inner Mongolia
000878078 260__ $$c2020
000878078 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1611167279_7512
000878078 3367_ $$2ORCID$$aWORKING_PAPER
000878078 3367_ $$028$$2EndNote$$aElectronic Article
000878078 3367_ $$2DRIVER$$apreprint
000878078 3367_ $$2BibTeX$$aARTICLE
000878078 3367_ $$2DataCite$$aOutput Types/Working Paper
000878078 500__ $$ahttps://www.researchgate.net/publication/342520278_Optimal_Configuration_of_Wind-to-Ammonia_with_the_Electric_Network_and_Hydrogen_Supply_Chain_A_Case_Study_of_Inner_Mongolia
000878078 520__ $$aDescription:Converting wind energy into ammonia (WtA) has been recognized as a promising pathway to enhance the usage of wind generation. This paper proposes a generic optimal configuration model of WtA at the network level to minimize the ammonia production cost by optimizing capacities and locations of WtA facilities including wind turbines, electrolyzers, hydrogen tanks and optimizing supply modes among regions. Specifically, the temporal fluctuation characteristics of wind resources, the operation flexibility of the ammonia synthesis reactor and the transport distances are considered. Three typical supply modes, i.e., the Local WtA, the EN (electric network)-based WtA and the HSC (hydrogen supply chain)-based WtA, combined with two energy transport modes including EN and HT (Hydrogen truck trailers) are included with the consideration of the maximal energy transport capacity of EN and transport distance per day of HT (500km). Real data of Inner Mongolia (a typical province in China with rich wind resources and existing ammonia industries) is employed to verify the effectiveness and significance of proposed model. The effect of above significant factors on optimal planning capacity of WtA facilities and optimal energy transport modes is analyzed, which provides guidelines for WtA configuration. The economic analysis shows that the average LCOA (levelized cost of ammonia) for WtA is approximately 0.57 euro/kg in Inner Mongolia and comparable to that for CtA (coal-to-ammonia, 0.41 euro/kg) with a reduction of 30% in capacity cost of the facilities.
000878078 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000878078 7001_ $$0P:(DE-HGF)0$$aLin, Jin$$b1
000878078 7001_ $$0P:(DE-Juel1)170014$$aHeuser, Philipp$$b2$$ufzj
000878078 7001_ $$0P:(DE-Juel1)145221$$aHeinrichs, Heidi$$b3$$ufzj
000878078 7001_ $$0P:(DE-HGF)0$$aXiao, Jinyu$$b4
000878078 7001_ $$0P:(DE-Juel1)173948$$aLiu, Feng$$b5
000878078 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b6$$ufzj
000878078 7001_ $$0P:(DE-HGF)0$$aSong, Yonghua$$b7
000878078 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b8$$ufzj
000878078 909CO $$ooai:juser.fz-juelich.de:878078$$pVDB
000878078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170014$$aForschungszentrum Jülich$$b2$$kFZJ
000878078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145221$$aForschungszentrum Jülich$$b3$$kFZJ
000878078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b6$$kFZJ
000878078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b8$$kFZJ
000878078 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b8$$kRWTH
000878078 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000878078 9141_ $$y2020
000878078 920__ $$lyes
000878078 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000878078 980__ $$apreprint
000878078 980__ $$aVDB
000878078 980__ $$aI:(DE-Juel1)IEK-3-20101013
000878078 980__ $$aUNRESTRICTED
000878078 981__ $$aI:(DE-Juel1)ICE-2-20101013