001     878078
005     20240708132934.0
037 _ _ |a FZJ-2020-02620
100 1 _ |a Li, Jiarong
|0 P:(DE-Juel1)179587
|b 0
|e Corresponding author
245 _ _ |a Optimal Configuration of Wind-to-Ammonia with the Electric Network and Hydrogen Supply Chain: A Case Study of Inner Mongolia
260 _ _ |c 2020
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1611167279_7512
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a https://www.researchgate.net/publication/342520278_Optimal_Configuration_of_Wind-to-Ammonia_with_the_Electric_Network_and_Hydrogen_Supply_Chain_A_Case_Study_of_Inner_Mongolia
520 _ _ |a Description:Converting wind energy into ammonia (WtA) has been recognized as a promising pathway to enhance the usage of wind generation. This paper proposes a generic optimal configuration model of WtA at the network level to minimize the ammonia production cost by optimizing capacities and locations of WtA facilities including wind turbines, electrolyzers, hydrogen tanks and optimizing supply modes among regions. Specifically, the temporal fluctuation characteristics of wind resources, the operation flexibility of the ammonia synthesis reactor and the transport distances are considered. Three typical supply modes, i.e., the Local WtA, the EN (electric network)-based WtA and the HSC (hydrogen supply chain)-based WtA, combined with two energy transport modes including EN and HT (Hydrogen truck trailers) are included with the consideration of the maximal energy transport capacity of EN and transport distance per day of HT (500km). Real data of Inner Mongolia (a typical province in China with rich wind resources and existing ammonia industries) is employed to verify the effectiveness and significance of proposed model. The effect of above significant factors on optimal planning capacity of WtA facilities and optimal energy transport modes is analyzed, which provides guidelines for WtA configuration. The economic analysis shows that the average LCOA (levelized cost of ammonia) for WtA is approximately 0.57 euro/kg in Inner Mongolia and comparable to that for CtA (coal-to-ammonia, 0.41 euro/kg) with a reduction of 30% in capacity cost of the facilities.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
700 1 _ |a Lin, Jin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Heuser, Philipp
|0 P:(DE-Juel1)170014
|b 2
|u fzj
700 1 _ |a Heinrichs, Heidi
|0 P:(DE-Juel1)145221
|b 3
|u fzj
700 1 _ |a Xiao, Jinyu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Liu, Feng
|0 P:(DE-Juel1)173948
|b 5
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 6
|u fzj
700 1 _ |a Song, Yonghua
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 8
|u fzj
909 C O |o oai:juser.fz-juelich.de:878078
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)170014
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145221
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrolysis and Hydrogen
|x 0
914 1 _ |y 2020
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21