


an embedded algebraic optimization problem. The right-hand side of the

differential equations depends on an optimal solution of the embedded

optimization problem, while the embedded algebraic optimization problem

is parameterized by the state variables of the differential equations. Solu-

tions of OCDE are the trajectories of the state and the optimization vari-

ables, which satisfy both the differential equations and the algebraic

optimization problem. OCDE has been applied to simulate dynamic phase

transition for a single atmospheric aerosol particle that exchanges mass with

surrounding gas.14-16 They have also been applied to model the cell metabo-

lism under changes in the environment by using metabolic networks.17

Models resulting from dynamic flux analysis are a special type of OCDE.18-21

More specifically, we study local well-posedness of OCDE. Well-

posedness of a dynamic system in general means that its solution exists

and is unique. Local well-posedness of OCDE means that a local solu-

tion of OCDE exists and is locally unique given the same initial condi-

tions. We will introduce this concept more formally later. Sufficient

conditions are given to analyze the local existence and uniqueness of

local solutions of OCDE. In particular, an OCDE is first reformulated

into a CS by applying Karush-Kuhn-Tucker (KKT) conditions.14,20,21 We

show that (1) under local optimality conditions, namely linear indepen-

dence constraint qualification (LICQ), strict complementarity condition

(SCC) and second-order sufficient condition (SOSC), the local solution

of OCDE is well-posed, which corresponds to a single mode of the

derived CS, (2) under LICQ, SOSC and transversality conditions, a local

solution of the original OCDE can be obtained by activating or

deactivating an inequality constraint. Due to activation or deactivation

of inequality constraints, OCDE belong to hybrid systems.

Although a CS can be derived by applying KKT conditions to OCDE,

the latter is fundamentally different from CS, because (1) KKT conditions

are local optimality conditions, while OCDE require the embedded opti-

mization problem to be solved to global optimality, (2) KKT conditions

are necessary, not sufficient for local optimality. One cannot guarantee

that local optimality is obtained. Therefore, well-posedness of the

derived CS does not necessarily guarantee well-posedness of the original

OCDE. We consider only local optimality of the embedded algebraic

optimization. Ensuring global optimality along the solution trajectory of

OCDE is important, but beyond the scope of this article. We note also

that this manuscript deals with the simulation task of OCDE. Optimiza-

tion of the entire OCDE is beyond the scope of this manuscript.

In comparison to the work of Landary et al.14 and our previous

work,20,21 we do not target a specific engineering problem but rather

aim to mathematically analyze the general form of OCDE. A CS-based

reformulation is presented along with rigorous formulations to construct

local solutions of the original OCDE through the derived CS. Contrasting

with our previous work,20 we give here a set of rigorous conditions,

including LICQ, SCC, SOSC and transversality condition, to analyze the

local well-posedness of OCDE. The proposed conditions (cf. Theorem 3.4)

are more general than condition (3.3) in the work.20 Contrasting with the

work,21 we consider here OCDE with nonlinear optimization problems

and the focus is on mathematical analysis and algorithm development.

This work is largely influenced by the literature of parametric

optimization, in particular the developments by Jongen, Fiacco and

their coauthors,22-27 and can be viewed as an application of the results

therein to OCDE. Other important works in parametric optimization also

include the treatment of linear/nonlinear parametric optimization with and

without integer variables.28-32 Herein, the variational analysis of local min-

ima for each mode is a special type of nondegenerate critical points (points

of type 122). Fiacco24 discusses sufficient conditions in parametric optimi-

zation that guarantee smooth parametric solution (cf. Theorem 3.3).

Switching points, where switching of modes happens (cf. Section 3.3), are

a special type of critical points (points of type 222). There exist also other

types of degenerate critical points,22 which are not treated here. These

types of critical points have typically stronger conditions, but in our exam-

ined engineering problems and based on own experiences they seem less

likely to happen. Extending the current results to these types of critical

points is not straightforward. Note that for parametric quadratic program-

ming,33,34 it could be shown that the solution can be described by continu-

ous piecewise affine functions, and analytical expressions were derived.

For parametric nonlinear programming, Sakizlis et al. applied KKT condi-

tions to the optimal control problem and derived a dynamic system, which

was constrained by inequality constraints.35 Switching of the active set

was discussed under the assumption that a solution exists.

The article is organized as follows. In Section 2, we present a prob-

lem formulation and a CS-based reformulation by applying KKT condi-

tions. In Section 3, we discuss the local solution of OCDE with the help

of CS. In Section 4, we present an event-based numerical algorithm to

solve OCDE. We demonstrate theory and algorithm using examples from

systems biotechnology and chemical engineering in Section 5. Contrived

numerical examples are also presented in the Supplemental Material.

2 | PROBLEM DEFINITION AND

REFORMULATION

2.1 | OCDE definition

An OCDE takes the following form

_x tð Þ= f x tð Þ,z tð Þð Þ,x t0ð Þ= x0 ð1aÞ

z tð Þ�arg min
ẑ�Rn

g x tð Þ, ẑð Þ ð1bÞ

s:t: hi x tð Þ, ẑð Þ=0, i=1,…, I, ð1cÞ

l j x tð Þ, ẑð Þ≤0, j =1,…,J, ð1dÞ

where x(t) � Rm are the differential states, z(t) � Rn are the algebraic

variables. f : Rm × Rn! R
m, g, hi, lj : R

m × Rn! R are assumed to be

twice continuously differentiable, that is, C2 . I, J�ℕ are fixed, and

ℐ≔ {1,…, I}, J≔ 1,…,Jf g . Equation (1a) refers to the (upper-level) dif-

ferential part, while Equations (1b)–(1d) refer to the (lower-level) alge-

braic optimization part. g x tð Þ, ẑð Þ is the objective function, while

Equations (1c) and (1d) are equality and inequality constraints, respec-

tively. We use “algebraic optimization” to distinguish from optimiza-

tion with dynamic systems, that is, we point out that both objective
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function and constraints in algebraic optimization are algebraic func-

tions. t0�R denotes the start time.

At any fixed time t = t* and states x(t*), the optimization problem (1b)–

(1d) searches for a minimizer, denoted by ẑ
*
. Recall that in this article, we

do not consider global optimality of the lower-level optimization prob-

lem and we restrict the discussion to local optimality. This minimizer

ẑ
*

is then fed back to the differential part (1a) through setting

z t*
� �

= ẑ
*
. x(t*) and z(t*) in turn determine the right-hand side of Equa-

tion (1a), namely _x t*
� �

. In this way, the lower-level optimization and

the upper-level differential parts are coupled with each other. In the

following, we use P(x(t)) to denote the lower-level optimization prob-

lem (1b)–(1d), in which P(�) is parameterized by x(t). Note that P(x(t))

indicates that t is the ultimate parameter for parameterization of the

lower-level optimization, following the sequence t, x(t), P(x(t)), how-

ever, for better understanding and later discussion we suggest to con-

sider x(t) as a whole to parameterize the lower-level optimization

problem, since x(t) is not a known function.

Denote IT = (t0 − ϵ, t0 + ϵ), ϵ > 0, as an open time interval. Contin-

uous functions x(t) : IT! R
m and z(t) : IT! R

n are called a local solu-

tion of OCDE (1) for the time interval IT, if 8t � IT, (i)

x tð Þ= x0 +

ðt

t0

f x τð Þ,z τð Þð Þdτ,

(ii) z(t) is a local minimizer of P(x(t)). If one can find such functions

x(t) and z(t) for t � IT, we say that a solution of OCDE (1) locally exists.

In particular, if we can find continuous functions x(t) and z(t) fulfilling

the above condition (i) and (ii) for half-open intervals IT = [t0, t0 + ϵ) or

IT = (t0 − ϵ, t0], we say that a solution of OCDE exists for the half-

open interval IT. If ϵ can be increased to infinity, we say that a solution

globally exists. Note that this article considers only local existence.

For t � IT, denote (x(t)>, z(t)>)> as a local solution of OCDE (1), ful-

filling initial condition x(t0) = x0, z(t0) = z0. This local solution is called

locally unique, if for t � IT there do not exist other solutions, denoted

as ~x tð Þ>,~z tð Þ>
� �>

, satisfying ~x t0ð Þ= x0 , ~z t0ð Þ= z0 . So local uniqueness

requires that there exists only one solution starting from x>0 ,z
>
0

� �>
.

OCDE is called locally well-posed with reference to an initial point

x>0 ,z
>
0

� �>
, if a local solution exists and it is locally unique.

Remarks: (1) According to the above definition, both x(t) and z(t) are

confined to be continuous functions in IT. Although there may exist discon-

tinuous local solutions of OCDE (1), in which x(t) or z(t) is discontinuous,

we have excluded this case from our discussion. (2) As a special type of

hybrid systems, OCDE may have different definitions of their solutions and

the corresponding well-posedness. We will stick to the above definition.

Denote V � R
m as a neighborhood of x0. Assume that 8x(t) � V,

the lower-level parametric optimization problem P(x(t)) has a local

solution zopt(x(t)), where zopt(�) : Rm! R
n. In this case, OCDE (1) can

be transformed into

_x tð Þ= f x tð Þ,zopt x tð Þð Þ
� �

,x t0ð Þ= x0 , ð2Þ

To numerically solve OCDE (1), one can apply the time-step

methods4,36 to Equation (2), which has a non-smooth right-hand side.

These types of methods evaluate zopt(x(t)) by calling an internal local opti-

mizer/solver repeatedly and use the evaluated value of zopt(x(t)) to inte-

grate forwards. Thus, one does not need to provide an event function

for locating the non-smoothness of the right-hand side of Equation (2).

The local optimizer behaves like a black box for integration and it is not

relevant to take care what happens inside the optimizer. However,

switching points may be hard to locate for the optimizer and jumps of

the solution trajectory may be missed. Moreover, because a theoretical

expression of the exact local minimum function zopt(�) is typically difficult

to obtain, iterative numerical optimization algorithms have to be applied

to approximate zopt(�). The cost of optimization calls may be high.

2.2 | CS-based reformulation

This section presents a CS-based reformulation of OCDE (1), derived

by applying KKT conditions to the lower-level optimization problem P

(x(t)). In the following sections, we will discuss the solution of the

derived CS and its relationship to the solution of the original OCDE.

For any function f : Rm! R, we denote the gradient rf as a row vec-

tor of first-order partial derivatives.

It is well-known that under constraint qualifications (e.g., LICQ, cf.

Definition 2.1) every local minimizer z(t) of P(x(t)) fulfills the so-called

KKT conditions (cf. e.g., the book of Nocedal and Wright37)

0 =rzL x tð Þ,z tð Þ,λ tð Þ,μ tð Þð Þ, ð3aÞ

0= hi x tð Þ,z tð Þð Þ, i�ℐ, ð3bÞ

0≤ μ j tð Þ⊥− l j x tð Þ,z tð Þð Þ≥ 0, j�J , ð3cÞ

where

L x tð Þ,z tð Þ,λ tð Þ,μ tð Þð Þ≔ g x tð Þ,z tð Þð Þ+
X

i�ℐ

λi tð Þhi x tð Þ,z tð Þð Þ

+
X

j�J

μ j tð Þl j x tð Þ,z tð Þð Þ

denotes the Lagrangian function. λ(t) = (λ1(t), …, λI(t))
>
� R

I and

μ(t) = (μ1(t), …, μJ(t))
>
� R

J denote the Lagrangian multipliers for equal-

ity and inequality constraints, respectively. The complementarity con-

straints (3c) require 8j�J ,

0 ≤ μ j tð Þ, 0≤ − l j x tð Þ,z tð Þð Þ, ð4aÞ

0 = μ j tð Þl j x tð Þ,z tð Þð Þ: ð4bÞ

For notational simplicity, denote y(t) ≔ (x(t)>, z(t)>, λ(t)>, μ(t)>)>

and define

A x tð Þ,z tð Þð Þ≔ j�J jl j x tð Þ,z tð Þð Þ=0
� �

ð5Þ

3 of 13 ZHAO ET AL.



as the active set of inequality constraints evaluated at (x(t)>, z(t)>)>. A

point y(t) is called a KKT point, if it satisfies KKT conditions (3). For

time point t = t*, we also denote x* = x(t*), z* = z(t*), λ* = λ(t*), μ* = μ(t*),

y* = y(t*) and similarly A* =A x t*
� �

,z t*
� �� �

to simplify the notation.

Replacing the lower-level optimization problem P(x(t)) by KKT sys-

tem (3) in Equation (1), we obtain a nonlinear complementarity sys-

tem (CS)

_x tð Þ= f x tð Þ,z tð Þð Þ,x t0ð Þ= x0, ð6aÞ

0=rzL x tð Þ,z tð Þ,λ tð Þ,μ tð Þð Þ, ð6bÞ

0= hi x tð Þ,z tð Þð Þ, i�ℐ, ð6cÞ

0≤ μ j tð Þ⊥− l j x tð Þ,z tð Þð Þ≥ 0, j�J : ð6dÞ

We will discuss the local solution of OCDE (1) with the help of

several concepts, developed for the derived CS (6). In particular, we

are interested in: How does the solution of OCDE locally look like?

Under which conditions does the OCDE locally have a solution? Is the

solution of OCDE locally unique?

Remarks: (1) Since KKT conditions are only necessary optimality

conditions, one cannot in general conclude that the solutions of CS (6)

correspond to the local minima of P(x(t)). Hence, a solution of CS may

not be a solution of OCDE. As we will see later, SOSC will be used to

ensure this. (2) Comparing CS (6) with a typical DAE system, CS (6)

requires in addition that inequality constraints (4a) to be fulfilled along

the solution trajectory. As we will see later, this leads to a typical fea-

ture of hybrid system, that is, the solution trajectories are continuous,

but have discontinuous derivatives at certain points.

2.3 | Modes of derived CS

Denote S as any subset of J , i.e., S⊆J (S can be the empty set). For

t = t*, the following DAE system is called “mode S” of CS (6)5:

_x tð Þ= f x tð Þ,z tð Þð Þ,x t*
� �

= x*, ð7aÞ

0=rzL x tð Þ,z tð Þ,λ tð Þ,μ tð Þð Þ, ð7bÞ

0= hi x tð Þ,z tð Þð Þ, i�ℐ, ð7cÞ

0= l j x tð Þ,z tð Þð Þ, j�S, ð7dÞ

0= μ j tð Þ, j�J =S: ð7eÞ

CS (6) has in total 2J different modes. Each mode M Sð Þ has as

many equations as variables, that is, no degrees of freedom. The initial

time of mode M Sð Þ is t* and its initial states are x*. Denote VS as the

set of consistent initial points of M Sð Þ . If x t*
� �

�VS , we denote the

solution of M Sð Þ by yS tð Þ= xS tð Þ>,zS tð Þ>,λS tð Þ>,μS tð Þ>
� �>

. Note that

if t* = t0 and x* = x0 are taken as a special case, mode M Sð Þ is initial-

ized by the initial condition of CS (6).

Remark: Compared to system (6), system (7) does not have

inequality constraints embedded in Equation (4a). So in general, solu-

tions of system (7) may not satisfy all inequality constraints in

Equation (4a).

We now summarize the conditions and notations, which will be

used later in this manuscript to analyze local well-posedness

of OCDE.

Definition 2.1 (LICQ37). Linear independence constraint qualification

(LICQ) is said to hold at point (x*>, z*>)>, if vectors rzhi(x
*, z*),

i � ℐ, rzlj(x
*, z*), j�A x*,z*ð Þ are linearly independent.

Definition 2.2 (SCC37). For any fixed S⊆J , strict complementarity con-

dition (SCC) is said to hold at y*, if

μ*j >0, l j x
*,z*ð Þ=0, 8j�S,

μ*j =0, l j x
*,z*ð Þ<0, 8j�J ∖S:

(

ð8Þ

Note that S is allowed to be an empty set.

For any point y* = (x*>, z*>, λ*>, μ*>)>, define

Γ
*
≔Γ x*,z*,λ*,μ*

� �
= j�J jl j x

*,z*
� �

= 0,μ*j =0
n o

:

If Γ* 6¼ ;, SCC is violated 8S.

Definition 2.3 (SOSC, cf. Theorem 2.124). Second-order sufficient con-

dition (SOSC) is said to hold at a KKT point y*, if

s>r2
z L x*,z*,λ*,μ*
� �

s>0, ð9Þ

for all s 6¼ 0 such that

rzl j x
*,z*,λ*,μ*

� �
s ≤0, forallj�J ,wherel j x

*,z*
� �

= 0,

rzl j x
*,z*,λ*,μ*

� �
s =0, forallj�J ,whereμ*j >0,

rzhi x
*,z*,λ* ,μ*

� �
s=0, i�ℐ:

ð10Þ

Definition 2.4 (TC). Denote y* as a KKT point and assume Γ* to contain

a single element, that is, Γ* = {j*}. Transversality condition (TC) is

said to hold at y* = y(t*) for t = t*, if

_μA
*

j*
t*
� �
�_l j* yA

*
∖Γ*

t*
� �� �

>0: ð11Þ

TC will be later assumed for point y*, for which SCC is violated.

By imposing TC we intend to ensure that SCC is violated only at t = t*

so that by activating or deactivating the j*-th inequality constraint a
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local solution can be obtained. The idea of formulating the above TC

is learned from Equation (1.6)38 and Equation (5).39

We summarize also the used assumptions in this manuscript as

follows:

Assumption 1 Functions f, g, hi, 8i � ℐ, lj, 8j�J , are twice continuously

differentiable.

Assumption 2 At t = t*, LICQ holds at point (x(t*)>, z(t*)>)>.

Assumption 3 At t = t*, SOSC holds at KKT point y(t*).

Assumption 4 At KKT point y(t*), either SCC holds, that is, Γ* = ;, or

only one inequality constraint violates SCC, that is, Γ* = {j*}.

Assumption 5 If SCC is violated for the j*-th constraint at t = t*, TC

holds.

3 | LOCAL SOLUTION OF OCDE

We now analyze the local well-posedness of OCDE in this section by

applying the conditions introduced above. In Section 3.1, we show

that under the proposed conditions, modes of derived CS are index-1

DAE systems. In Section 3.2, SOSC is applied to points satisfying SCC,

which guarantees that the local solution of each mode is identical to

the local solution of OCDE, which is also locally unique. In Section 3.3,

we discuss the situation when SCC fails and we show that mode

switching of derived CS can generate a local solution of the origi-

nal OCDE.

3.1 | Regularity conditions for modes

This section shows that under certain conditions originated from para-

metric optimization, the derived modes are index-1 DAE systems. And

therefore, these DAE systems have well-posed local solutions. The

results can be applied both to the cases when SCC is satisfied or not.

For any matrix B � R
n × k, k ≤ n, Ker B> ≔ {s � Rn| B>s = 0} denotes

the kernel of B>. Denote H � R
n × n as a symmetric real matrix and let

T ⊆ R
n be a linear subspace of Rn. H|T is said to be non-singular (posi-

tive definite), if and only if, 8a � T\{0}, a>Ha 6¼ 0 (a>Ha > 0).

Lemma 3.1 (Lemma 2.4.323). Let A be a symmetric n × n real matrix, B

be a n × k real matrix and C be a k × k real matrix. Matrix

A B

CB> 0

� 	

is non-singular, if and only if, C is non-singular, rank(B) = k and AjKerB>

is non-singular.

For any mode M Sð Þ, denote

FS x tð Þ,z tð Þ,λ tð Þ,μ tð Þð Þ=

rzL
> x tð Þ,z tð Þ,λ tð Þ,μ tð Þð Þ

hℐ x tð Þ,z tð Þð Þ

lS x tð Þ,z tð Þð Þ

μJS tð Þ

0

B
B
B
@

1

C
C
C
A

ð12Þ

as the right-hand side of Equations (7b)–(7e). hℐ(x(t), z(t)) ≔ (…, hi(x(t),

z(t)), …)>, i � ℐ, lS x tð Þ,z tð Þð Þ≔ …, l j x tð Þ,z tð Þð Þ,…
� �>

, j�S and

μJ ∖S tð Þ≔ …,μ j tð Þ,…
� �>

, j�J ∖S. Denote matrix

ES = …,rzh
>
i ,…

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

i�ℐ

,…,rzl
>
j ,…

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

j�S

0

B
@

1

C
A�R

n× I+ jSjð Þ

as the matrix containing the gradients (column vectors) of all equality

constraints rzh
>
i , i�ℐ, and the inequality constraints rzl

>
j , j�S.

Theorem 3.1 (Non-singularity of r
z> ,λ> ,μ>ð Þ

>FS ) r
z> ,λ> ,μ>ð Þ

>FS is non-

singular, if and only if

ið ÞES hasfull columnrank, ð13aÞ

iið Þr2
z L
�
�
Ker ESð Þ

> is non-singular: ð13bÞ

Proof. Apply Lemma 3.1 to

r
z> ,λ> ,μ>ð Þ

>FS =

r2
z L rzh

>
ℐ
rzl
>
S rzl

>
J ∖S

rzhℐ 0 0 0

rzlS 0 0 0

0 0 0 diag 1,…,1ð Þ>

0

B
B
B
@

1

C
C
C
A

by choosing matrix C in Lemma 3.1 as

C = diag 1,…,1
|fflffl{zfflffl}

I

,1,…,1
|fflffl{zfflffl}

jSj

0

B
@

1

C
A:

By applying the Implicit Function Theorem (IFT, cf. Theorem

2.4.125), Equations (7b)–(7e) uniquely determine z(t), λ(t) and μ(t) in a

neighborhood of x(t). Hence, Theorem 3.1 results in an important con-

sequence that mode M Sð Þ, defined in Equation (7), is an index-1 DAE.

And hence, the well-posedness of Equation (7) can be deduced from

the existing results of index-1 DAE system.

In the following of this subsection we show that conditions in

Theorem 3.1 can be actually deduced, if the optimization problem P(x)

fulfills certain moderate conditions.

Lemma 3.2 (Lemma 2.124). If SOSC holds at a KKT point y*, then z* is a

locally isolated (locally unique) minimizer of P(x*).

Note that Lemma 3.2 does not require SCC.

Define
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Ω
− A*,Γ*
� �

≔ s�Rm j

rzl js≤0, j�Γ
*

rzl js=0, j�A
*
∖Γ

*

rzhis=0, i�ℐ

8

><

>:

9

>=

>;

, ð14Þ

Ω
+ A*,Γ*
� �

≔ s�Rm j

rzl js ≥0, j�Γ
*

rzl js =0, j�A
*
∖Γ

*

rzhis=0, i�ℐ

8

><

>:

9

>=

>;

= s�Rmj−s�Ω−f g: ð15Þ

Lemma 3.3 If SOSC is fulfilled at a KKT point y*, i.e.,

s>r2
z L x*,z*,λ*,μ*
� �

s>0 , 8s�Ω
−\{0}, and if Γ* contains a single

element, that is, Γ* = {j*}, then:

(1) r2
z L x*,z*,λ*,μ*
� ��

�

Ker EA
*

� �> is positive definite,

(2) r2
z L x*,z*,λ*,μ*
� ��

�

Ker EA
*∖Γ*

� �> is positive definite.

Proof. 8s � Ω
+\{0}, −s � Ω

−\{0} and s>r2
z Ls= −sð Þ>r2

z L −sð Þ>0 .

Because Γ
* contains a single element,

Ω
+ [Ω− =Ker EA

*
∖Γ*

� �>
:

Hence, when 8s�Ker EA
*
∖Γ*

� �>
∖ 0f g , s>r2

z Ls>0 , namely item (2)

holds. Item (1) is a direct consequence of item (1), because

Ker EA
*

� �>
⊆Ker EA

*
∖Γ

*
� �>

:

Now we summarize the first important result of this work as

follows.

Theorem 3.2 If LICQ and SOSC hold at a KKT point y*, Γ* contains at

most a single element, then

j rzF
A*

∖Γ*

j6¼0, j rzF
A*

j6¼ 0: ð16Þ

Proof. From Theorem 3.1, we prove that Condition (13) is fulfilled

for S =A*
∖Γ

* and S =A* . Condition (13a) follows directly from LICQ

condition, while Condition (13b) follows from Lemma 3.3.

The consequences of Theorem 3.2 are that: (1) Modes M A*
� �

and M A*
∖Γ

*
� �

are index-1 DAE systems, whose local solutions are

well-posed. (2) When SCC is fulfilled, among all modes there exists

only one mode M A*
� �

, whose solution passes through KKT point y*.

(3) When SCC is violated for a single inequality constraint, that is,

Γ
* = {j*}, there exist in total two modes, M A*

� �
and M A*

∖Γ
*

� �
, whose

solutions pass through KKT point y*, refer to Section 3.3.

3.2 | Local solutions when SCC holds

From Theorem 3.2, when SCC holds at a KKT point y*, mode M A*
� �

is

an index-1 DAE system and there exists ϵ>0 such that inequality

constraints (4a) are fulfilled, 8t� (t*− ϵ, t*+ ϵ). So the solution yA
*

tð Þ of

mode M A*
� �

is a solution of CS (6), taking t* = t0 and x* = x0 as initial

condition. To guarantee that yA
*

tð Þ is also a solution of the original

OCDE, one needs in addition to ensure that zA
*

tð Þ are the local min-

ima of P xA
*

tð Þ
� �

. In this section, we show that this can be actually

deduced if SOSC at the single KKT point y* is fulfilled.

Theorem 3.3 (Local minima of P(x(t)), Theorem 2.124). If (i) the

SOSC for a local minimizer of P(x*) holds at (x*>, z*>)> with associated

Lagrange multipliers λ* and μ*, (ii) LICQ condition of P(x*) holds at (x*>,

z*>)>, (iii) SCC of P(x*) holds at (x*>, z*>, λ*>, μ*>)>, then:

(1) z* is a local isolated minimizer of P(x*) and the associated

Lagrange multipliers λ* and μ
* are unique.

(2) For any x
0

� R
m in a neighborhood of x*, there exists a unique

once-continuously differentiable function (zf(x
0

)>, λf(x
0

)>, μf(x
0

)>)>, implic-

itly defined by 0= FA
*

x,z,λ,μð Þ , satisfying the SOSC for a local minimum

of problem P(x
0

) such that zf(x*) = z*, λf(x*) = λ*, μf(x*) = μ*, and hence,

zf(x
0

) is a locally unique local minimizer of P(x
0

) with associated unique

Lagrange multipliers λf(x
0

) and μ
f(x
0

).

(3) SCC and LICQ hold at zf(x
0

) for x
0

near x*.

In other words, under LICQ, SOSC and SCC at a KKT point, the

points on solution trajectory zA
*

tð Þ of mode M A*
� �

are not only KKT

points, but also local minima of P(x(t)). Therefore, the local solution

yA
*

tð Þ of mode M A*
� �

is locally a solution of the original OCDE, that

is, the local existence of the solution of OCDE is deduced.

Local uniqueness of the solution of OCDE can be deduced from

Theorem 3.3 and local well-posedness of index-1 DAE systems as

follows.

Corollary 3.1 If conditions in Theorem 3.3 are fulfilled,

xA
*

tð Þ>,zA
*

tð Þ>
� �>

is a local solution of OCDE (1), which is

locally unique.

Proof. Because local solution is considered, the initial condition of

OCDE (1) can be shifted to t0 = t*, x0 = x*. Assume that

~x tð Þ>,~z tð Þ>
� �>

, t� IT(ϵ), is another local solution of OCDE with

~x t*
� �

= x* , ~z t*
� �

= z* . Because ~x tð Þ and ~z tð Þ are continuous, for t� IT(ϵ),

~x tð Þ>,~z tð Þ>
� �>

are in a close neighborhood of (x*>, z*>)>. From point

(3) of Theorem 3.3, we have z f ~x tð Þð Þ=~z tð Þ. From point (3) of Theorem

3.3, LICQ and SCC hold for ~x tð Þ>,~z tð Þ>
� �>

. So there exist unique ~λ tð Þ

and ~μ tð Þ, such that FA
*

~x tð Þ,~z tð Þ,~λ tð Þ,~μ tð Þ
� �

=0 and _~x tð Þ= f ~x tð Þ,~z tð Þð Þ. In

other words, ~y tð Þ≔ ~x tð Þ>,~z tð Þ>,~λ tð Þ>,~μ tð Þ
� �>

is another solution of

mode M A*
� �

except from yA
*

tð Þ , starting from x(t*) = x*, z(t*) = z*,

λ(t*) = λ
* and μ(t*) = μ

*. This is a contradiction, because mode M A*
� �

is

an index-1 DAE system and local solution of index-1 DAE system is unique.

3.3 | Local solutions when SCC fails

When SCC holds, Theorem 3.2 and 3.3 imply that the OCDE is well-

posed. This section discusses a special type of degenerated situations,

in which SCC fails for the j*-th inequality constraint at a KKT point

(x*>, z*>, λ*>, μ*>)> at t = t*, i.e.
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Γ
* = j*

� �
6¼ ;, ð17Þ

while the other conditions in Theorem 3.3 still hold.

For a given Γ
*, we consider modes M A*

� �
and M A*

∖Γ
*

� �
. From

Theorem 3.2, each mode is still an index-1 DAE system, and therefore

their solutions, denoted as yA
*

tð Þ and yA
*
∖Γ*

tð Þ, are locally well-posed.

Without loss of generality, we shift the initial time to t = t* with initial

states (x*>, z*>)>.

Because μA
*

j*
t*
� �

= l j* yA
*
∖Γ*

t*
� �� �

=0 and the equality constraint

μ j* tð Þ=0 (l j* y tð Þð Þ=0 ) are not included in the definitions of mode

M A*
� �

(M A*
∖Γ

*
� �

), it is possible that inequality constraints μ j* tð Þ≥0

(− l j* y tð Þð Þ≥0) of complementarity conditions may be violated along

the solution trajectory yA
*

tð Þ (yA
*
∖Γ

*

tð Þ) for t near t*.

The motivation of imposing TC is to use first-order time gradients

to ensure the change of signs of μA
*

j*
tð Þ and l j* yA

*
∖Γ*

tð Þ
� �

at t = t*

where SCC fails, so that SCC is violated only at t = t*. Under TC, we

will show that the local solution of mode M A*
� �

for t� (t*− ϵ, t*] and

the local solution of M A*
∖Γ

*
� �

for t� [t*, t*+ ϵ) (or change the direc-

tion of time) can be linked together to construct a local solution of CS

for t near t*. Moreover, under SOSC this local solution is a local solu-

tion of the original OCDE. If TC is violated, one may obtain multiple

solutions starting from the same initial point (x*>, z*>)>, or more com-

plicated phenomena may happen. In particular, by assigning different

signs to _uA
*

j*
t*
� �

and _l j* yA
*
∖Γ*

t*
� �� �

, four cases of mode switching are

obtained as shown in Figure 1.

Case A: _uA
*

j*
t*
� �

<0, _l j* yA
*
∖Γ

*

t*
� �� �

<0. In this case, the solution

trajectory of mode M A*
� �

fulfills inequality constraint uj*(t) ≥0, for t�

[t*− ϵ, t*), while the solution of mode M A*
∖Γ

*
� �

fulfills inequality con-

straint lj*(y(t))≤0, for t� [t*, t*+ ϵ). Therefore, if one links the solution

of mode M A*
� �

for t� (t*− ϵ, t*], and the solution of M A*
∖Γ

*
� �

at KKT

point y* for t� [t*, t*+ ϵ), a solution of the CS (6) can be obtained.

Case B: _uA
*

j*
t*
� �

>0, _l j* yA
*
∖Γ

*

t*
� �� �

>0. This case is analogous to

case A by inverting the direction of time.

Case C: _uA
*

j*
t*
� �

>0, _l j* yA
*
∖Γ*

t*
� �� �

<0. In this case, both inequal-

ity constraints uj*(t)≥0 and l j* y tð Þð Þ≤0 will get fulfilled for modes

M A*
� �

and M A*
∖Γ

*
� �

, for t� [t*, t*+ ϵ). Therefore, CS (6) does not

have a unique solution starting from KKT point y*.

Case D: _uA
*

j*
t*
� �

< 0, _l j* yA
*
∖Γ*

t*
� �� �

>0. This case is analogous to

case C by inverting the direction of time.

Although case C and D are possible in general, by imposing TC

(11), we exclude cases C and D. Case C corresponds to the situation

that the local solutions of OCDE and the derived CS are not locally

unique. Case D corresponds to the situation where a local solutions of

OCDE and the derived CS may not exist. Because case C and D result

in non-regular solutions, they are excluded from our discussion. To

our experience, the encountered examples are mainly of case A and B.

However, a mathematical example of case C and D is shown in Exam-

ple 1 of the supplemental material.

In the language of parametric optimization, case A and B refer to

deactivation and activation of inequality constraints l j* x tð Þ,z tð Þð Þ≤0

along the solution trajectory of CS, respectively. Because of the acti-

vation/deactivation of inequality constraints, the solution trajectory

of CS contains discontinuous derivatives.

We have shown that mode switching fulfills all complementarity

constraints, as well as KKT conditions, for a small time interval con-

taining the switching time. Next we show that under SOSC at t = t*,

for t � IT the solutions of M A*
∖Γ

*
� �

to M A*
� �

correspond not only to

KKT points, but also to a local minimum. Therefore, we conclude in

F IGURE 1 Four cases of mode

switching when TC holds. Solid lines refer

to solutions fulfilling all inequality

constraints (4a), while dashed lines refer

to solutions with the j*-th inequality

constraint (4a) violated. The arrows

represent the direction of time
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Theorem 3.4 that a mode switch of the derived CS leads to a local

solution of OCDE, that is, a local solution of OCDE exists. Local

uniqueness property of OCDE, when SCC is violated, is a more chal-

lenging topic and not covered in this article.

Theorem 3.4 Assume that for KKT point (x*>, z*>, λ*>, μ*>)>, LICQ and

SOSC hold, while SCC is violated for the j*-th inequality constraint,

that is, Γ* = {j*}. If TC holds with _uA
*

j*
t*
� �

<0 ( _uA
*

j*
t*
� �

>0 ), then

there exists an ϵ>0 such that: (1) zA
*

tð Þ are local minima of

P xA
*

tð Þ
� �

, t� (t*− ϵ, t*] (t� [t*, t*+ ϵ)), (2) zA
*
∖Γ*

tð Þ are local min-

ima of P xA
*
∖Γ

*

tð Þ
� �

, t� [t*, t*+ ϵ) (t� (t*− ϵ, t*]).

Proof. We prove only the case _uA
*

j*
t*
� �

<0 (cf. case A in Figure 1,

that is, mode switch from M A*
� �

to M A*
∖Γ

*
� �

. We aim to apply

Lemma 3.2, for t = t*, t� (t*− ϵ, t*) and t� (t*, t*+ ϵ), separately. This

proof follows similarly to Theorem 2.1.24

At t = t*, from Lemma 3.2, KKT point y* is a local minimizer of P

(x*). Moreover, zA
*

t*
� �

= zA
*
∖Γ

*

t*
� �

= z*. So (1) and (2) hold at t = t*.

At t � (t* − ϵ, t*), because of TC, SCC holds for solution trajectory

yA
*

tð Þ , 8t� (t*− ϵ, t*). Therefore, the active (binding) set

A yA
*

tð Þ
� �

=A* is unchanged for t� (t*− ϵ, t*), given ϵ sufficiently

small. Recalling Lemma 3.2, we aim to prove that SOSC holds for 8t�

(t*− ϵ, t*), i.e.

s>r2
z L yA

*

tð Þ
� �

s>0, ð18Þ

for all s � Rm\{0} satisfying

rzl j yA
*

tð Þ
� �

s=0, j�A*,

rzhi yA
*

tð Þ
� �

s=0, i�ℐ:
ð19Þ

Assume now that SOSC (18), (19) does not hold for t � (t* − ϵ, t*),

namely for ϵk! 0, we can always find tk � (t* − ϵ
k, t*) such that there

exists a sk 6¼ 0, sk satisfying Equation (19) and sk>r2
z L yA

*

tk
� �� �

sk ≤0.

Without loss of generality, take all ksk k = 1 and select a convergent

sub-sequence sκ of sk with sκ!�s. Then, we have �s>r2
z L yA

*

t*
� �� �

�s ≤0

with

rzl j yA
*

t*
� �� �

�s=0, j�A*,

rzhi yA
*

t*
� �� �

�s=0, i�ℐ,

namely �s�Ker EA
*

� �>
=Ω+ \Ω−

⊆Ω
− . This is to say that SOSC does

not hold at t = t*, which is a contradiction.

For t � (t*, t* + ϵ), the active set A yA
*
∖Γ*

tð Þ
� �

=A*
∖Γ

* . By using

point (2) of Lemma 3.3, the result can be proven in a similar way,

which is omitted here.

4 | NUMERICAL ALGORITHM

For initial points where SCC is fulfilled, and if the assumptions in The-

orems 3.2 and 3.3 hold, local solution of OCDE (1) is well-posed and is

the same as the local solution of a derived mode of CS (6). For initial

points where SCC is violated, and if the assumptions in Theo-

rems 3.2 and 3.4 hold, a local solution of OCDE can be constructed

by sequentially connecting the local solutions of two derived

modes of CS (6). So numerical methods for CS can be directly

applied to obtain local solutions of OCDE. Numerical methods for

CS can be roughly classified into event-tracking method, time-

stepping method and smoothing method.40,41 This section will pre-

sent an event-tracking algorithm to solve OCDE. Recall that,

functions x(t) and z(t) are called a local solution of OCDE (1) for the

time interval IT, if 8t � IT, (i)

x tð Þ= x0 +

ðt

t0

f x τð Þ,z τð Þð Þdτ,

(ii) z(t) is a local minimizer of P(x(t)), cf. Section 2.1.

The event-tracking algorithm solves a sequence of DAE modes

M Sið Þ, i = 0, 1, …, and the event is determined by the time when SCC

fails. We illustrate this procedure as follows. At t = t0, we assume that

a consistent initial point y0 fulfilling Equations (7b)–(7e) is obtained,

for example, by solving the lower-level optimization P(x0). Denote

S0 =A y0ð Þ as the active set at y(t0) = y0. Without loss of generality,

we can assume that SCC is fulfilled at y0 (If SCC is violated at y0,

switching happens exactly at this point, cf. Theorem 3.4.). We thus

integrate DAE system M S0ð Þ for a positive time interval without vio-

lating any inequality constraints (4a). If the conditions in Theorem 3.2

and 3.3 hold, yS0 tð Þ, t� [t0, t0+ ϵ), is a locally unique solution of OCDE.

Denote

tm ti,yi ,Sið Þ≔inff ti+1 ≥0 j

9 j*�Si

s:t:

μ
Si
j*
ti+1ð Þ=0

2

6
6
4

3

7
7
5
or

9 j*�JSi

s:t:

l j* ySi ti+1ð Þ
� �

=0

2

6
6
4

3

7
7
5
g−ti, i=0,1,…,

ð20Þ

as the minimum length of time interval, for which SCC is violated for

the j*-th constraint at ti+1 = ti + tm ti,yi,Sið Þ, i = 0, 1, …. Hence, t1, t2, …,

denote switching time.

Starting from i = 0 and S0 , mode M S0ð Þ with initial states y0 is

solved until switch time t1. From the definition of tm(�), one has

t1−t0 = tm t0,y0,S0ð Þ . Denote y1 = y
S0 t1ð Þ as the states at time t1,

Γ
* = Γ(y1) = {j*} as the index of the j*-th constraint violating SCC,

A* =A y1ð Þ as the active set at y1. Choose

S1� S1 6¼ S0 j S1 =A
* or S1 =A

*
∖Γ

*
� �

so that S1 is different from S0 . If the conditions in Theorem 3.4

hold, for t� [t1, t1+ ϵ), the solution trajectory yS1 tð Þ of mode M S1ð Þ

starting from y1 is a local solution of OCDE. Therefore, at t = t1 one

starts to solve mode M S1ð Þ until SCC is violated again at t = t2. We

assume that this procedure can be repeated until a given ending time

tf>0 is reached. We summarize this solution procedure formally as the

following algorithm.
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An important step in Algorithm 1 is to determine the minimum

length of integration tm ti,yi ,Sið Þ, cf. Equation (20). Define

USi y tð Þð Þ≔ …,u j tð Þ,…
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

j�Si

,…, l j y tð Þð Þ,…
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

j�J ∖Si

0

B
@

1

C
A

>

, i=0,1,…: ð21Þ

For each mode M Sið Þ initialized at yi, tm ti ,yi,Sið Þ can be numeri-

cally computed by monitoring the values of USi y tð Þð Þ along the solu-

tion trajectory ySi tð Þ. When any element of USi y tð Þð Þ crosses zero at ti

+1, it indicates that SCC is violated at ti+ 1 and tm ti,yi ,Sið Þ= ti +1−ti is

obtained. In literature, USi y tð Þð Þ are called event functions and an

event happens if any element of USi y tð Þð Þ crosses zero. Note that

algorithms to locate the zeros of event functions USi y tð Þð Þ for DAE

system M Sið Þ already exist (cf. the references in paper4).

Algorithm 1 is implemented as a numerical toolbox OCDES

(OCDE Simulator, https://github.com/modsim/OCDES) in MATLAB

environment (Figure 2). Users need to provide the symbolic formula-

tion of OCDE (1) using MATLAB's symbolic variables and an initial

condition x0. Initial states z0 with corresponding Lagrangian multipliers

λ0, μ0 are first computed by calling NLP solver fmincon in MATLAB.

Then derivatives in the formulation of mode M S0ð Þ are obtained by

applying MATLAB symbolic toolbox. Symbolic expressions of mode

M S0ð Þ can be constructed. M-files are then generated for evaluating

the right-hand side of differential Equations (7a) and algebraic Equa-

tions (7b)–(7e) of mode M S0ð Þ . Event functions USi y tð Þð Þ , defined in

Equation (21), are also given to the integrator ode15s (cf. the paper of

Shampine and Reichelt42) through the “events” option (Surely ode15s

is just one choice and there may exist other suitable integrators.). To

this point, one can start calling the integrator to solve mode M S0ð Þ

until an element in USi y tð Þð Þ changes its sign at t = t1, that is, a

switching is encountered. With updated index, initial condition and

modes, the same procedure is evoked again. To detect non-regular

systems, LICQ, SCC, SOSC and TC are also checked at the initial and

switching times. The software implementation automates this proce-

dure repeatedly until the specified end time tf is reached.

5 | NUMERICAL EXAMPLES

We illustrate the approach and algorithm using a model for microbial culti-

vation and a single flash unit. Contrived numerical examples and a micro-

bial example can be found in the Supplemental Material. All examples are

computed using the toolbox OCDES which is published on GitHub.

5.1 | Microbial cultivation example

Dynamic flux balance analysis (DFBA) is an established modeling strat-

egy to simulate microbial conversion processes. It enables a combined

simulation of both intracellular and extracellular environments. A

DFBA model contains two coupled parts, a dynamic part at the upper

level for the extracellular environment and an optimization part at the

lower level for the intracellular environment. For more technical

details of DFBA please refer to the papers43,20 and the references

therein.

Algorithm 1 An event-based algorithm to solve OCDE (1)

At t = t0, compute z>0 ,λ
>
0 ,μ

>
0

� �>
, so that y0 = x>0 ,z

>
0 ,λ
>
0 ,μ

>
0

� �>
is a KKT point of

P(x0)

S0 A x0,z0ð Þ

i 0

while t≤ tf do

Solve DAE mode M Sið Þ with initial value yi

Compute the length of time integration tm ti,yi ,Sið Þ in Equation (20)

ti+1 ti + tm ti ,yi,Sið Þ

A* A ySi ti+1ð Þ
� �

Γ
* Γ ySi ti+1ð Þ

� �

if LICQ, SOSC, TC hold then

Si+1 A*,A*nΓ*
� �

n Sif g

yi+1 ySi ti+1ð Þ

i i+1

else

Stop (failure)

end if

end while
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This section presents an engineering application of DFBA in sys-

tems biotechnology, in which the central metabolic network of wild-

type Corynebacterium glutamicum is considered. The central network

model comprises 46 intracellular reactions and 49 metabolites, which

enables the simulation of C. glutamicum growth on glucose as sole car-

bon and energy source. More technical modeling details and the

DFBA method can be found in papers43,20 and the references therein.

To illustrate the basic idea, a simplified DFBA example can be found

in the Supplemental Material.

The DFBA method results in the following OCDE system

_cBiomass tð Þ= vbiosynth tð Þ cBiomass tð Þ, cBiomass 0ð Þ= 1, ð22aÞ

_cGLC tð Þ= −vGLC_t_PEP tð Þ cBiomass tð Þ, cGLC 0ð Þ=20, ð22bÞ

v tð Þ,a tð Þð Þ� arg max
v̂�R46 , â�R104

v̂ATPexcess

v̂
>
v̂

+ ϵâ
>
â, ð22cÞ

s:t:0≤ â, ð22dÞ

v̂ = Eaâ, ð22eÞ

v̂GLC_t_PEP =
4:5 cGLC tð Þ

cGLC tð Þ+1
: ð22fÞ

cBiomass(t) and cGLC(t) are the concentrations of biomass (g/l) and glu-

cose (g/l) in the fluid medium. vGLC_t_PEP(t), vATPexcess(t) � R are the glucose

uptake flux and the flux of converting excess ATP to ADP, which are

elements of vector v(t) � R46 in (mmol/g/hr) containing all flux variables.

Ea � R
46 × 104 is a derived matrix containing all extreme rays. â�R104 are

coefficients of extreme rays and the flux vector v̂ = Eaâ. ϵ is small posi-

tive number to avoid non-unique local solutions of a.20 In comparison

to the presented example,20 a different cellular objective function is

chosen, namely we take the assumption that cells have the goal to

maximize ATP yield while minimizing enzyme usage (cf. Table 344).

Because model (22) is an OCDE, we apply Algorithm 1 to solve it.

Its solution is presented in Figures 3 and 4. The extracellular states

0 0.5 1 1.5 2 2.5 3

Time [h]

0

1

2

3

4

5

C
o
n
c
e
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o
n
 [
g
/l
]

c
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(t)

c
GLC

(t)/5

F IGURE 3 Extracellular concentrations cBiomass(t) and cGLC(t) of

DFBA model (22) [Color figure can be viewed at

wileyonlinelibrary.com]

F IGURE 2 Software implementation of Algorithm 1 in MATLAB
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cBiomass(t) and cGLC(t) are presented in Figure 3. Figure 4 shows the

values of selected Lagrangian multipliers, where small circle refers to

the switching time. The computation is performed on a Windows 10

Computer with MATLAB version 2016b installed. The computation of

this example takes 159.8 s.

5.2 | Vapor–liquid equilibrium example

Here we present an example in chemical engineering, in which a single-

stage flash unit in vapor–liquid equilibrium, shown in Figure 5, is modeled

by a nonlinear OCDE. The flash unit separates a binary mixture of ace-

tone (1) and ethanol (2) into two phases. The flash unit is operated at

constant temperature T = 338 K and pressure p = 101325 Pa. The

dynamic model for a system with C components is given by

_M tð Þ= Fin tð Þ−Vout tð Þ−Lout tð Þ, ð23aÞ

_Mi tð Þ= Fin tð Þ�zi,in tð Þ−Vout tð Þ�yi tð Þ−Lout tð Þ�xi tð Þ, i= 1,…,C−1, ð23bÞ

M tð Þ=
XC

i=1

Mi tð Þ, ð23cÞ

0= Fin tð Þ−Vout tð Þ−Lout tð Þ, ð23dÞ

Vout tð Þ=
MV tð Þ

MV tð Þ+ML tð Þ
� Vout tð Þ+ Lout tð Þð Þ, ð23eÞ

where M(t) are the total moles of the system, Mi(t) � R
C are the molar

amounts of each component i. Fin(t), Vout(t) and Lout(t) are the flow rate

of the feed, vapor outlet and liquid outlet with molar composition zi,

in(t) � R
C, yi(t) � R

C and xi(t) � R
C, respectively. MV(t) and ML(t) are the

moles of the vapor and liquid phase, respectively. We assume that the

vapor and liquid phase in the flash unit are in equilibrium to determine

MV(t), ML(t), yi(t) � R
C and xi(t) � R

C, respectively. Phase equilibrium at

a given temperature T and pressure p is found at the global minimum

of the Gibbs free energy.45,46 The embedded optimization problem

can be written as47,48

MV tð Þ,ML tð Þ,x tð Þ,y tð Þð Þ�arg min
M̂V ,M̂L , x̂, ŷ

GM = M̂V

XC

i=1

ŷi
�G
V

i + M̂L

XC

i=1

x̂i �G
L

i

ð24aÞ

s:t: Mi tð Þ= M̂V �ŷi + M̂L�x̂i, i=1,…,C, ð24bÞ

XC

i=1

Mi tð Þ= M̂V + M̂L, ð24cÞ

XC

i=1

ŷi−
XC

i=1

x̂i =0, ð24dÞ

M̂V ≥ ϵ, M̂L ≥ ϵ, ð24eÞ

ŷi >0, x̂i >0, i=1,…,C, ð24fÞ

where GM is the reduced Gibbs free energy of the mixture and �G
V

i and

�G
L

i are the partial molar Gibbs free energies for each component in

the respective phase. The equality constraints comprise C species

mole balances, the overall mole balance and the closure conditions for

the mole fractions. The inequality constraint become active if one

phase vanishes, that is, the mixture is vapor only or liquid only. The

partial molar Gibbs free energies are given by the following relations:

�G
V

i = ln
yi�p

pi0 Tð Þ

� 	

, i=1,…,C,

�G
L

i = ln xi�γi T,xð Þð Þ, i=1,…,C,

where pi0 is the vapor pressure at given temperature T that is calcu-

lated using the extended Antoine equation and γi is the activity coeffi-

cient calculated with the NRTL model. Note that we introduce a small

regularization term ϵ = 10−6 to ensure that the SOSC are fulfilled in

the single-phase region. The first-order KKT conditions of optimiza-

tion problem (24a) - (24f) are essentially equal to the ones discussed

in literature47,48 except for a small error in the mass balance caused

by the introduced regularization term.

The number of phases present in the flash unit depends on the

overall composition, temperature T and pressure p. While we set the
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F IGURE 4 The values of Lagrangian multipliers (with switching

points) along the solution trajectory [Color figure can be viewed at

wileyonlinelibrary.com]

F IGURE 5 Illustration of single-stage flash unit
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latter to constant values, we use a feed with changing composition

resulting in vanishing and reappearing phases:

Fin tð Þ =0:1kmolh−1

z1,in tð Þ =1−0:5� 1+ tanh 10� t−5ð Þð Þð Þ

z2,in tð Þ =1−z1,in,

where t is the time in hours. The initial conditions areM(t = 0) = 1 kmol

andM1(t = 0) = 0.5 kmol. For a final simulation time of 15 hr, the simu-

lation trajectories are given in Figure 6.

The upper plot shows the molar hold-ups of the vapor and liquid

phase, respectively, while the lower plot shows the mole fractions of

acetone. For the given simulation set-up, the simulation starts with a

two-phase mixture, that is, the hold-up of both phases is greater than

0. The feed of essentially pure acetone (z1, in ≈ 1 for t� 5 hr) leads to

an increase of the overall mole fraction of this component z1. As a

consequence, the liquid phase vanishes after approx. 2.26 hr and only

vapor exists in the flash unit (ML = ϵ). After approx. 5 hr, the feed

changes to pure ethanol (z1, in = 0 for t� 5 hr) leading to a decrease

of the overall composition of acetone z1 and the reappearance of the

liquid phase at t ≈ 6.47 hr. After 11.74 hr, another switching point is

detected indicating the disappearance of the vapor phase (MV = ϵ).

The computation is performed on a Windows 10 Computer with

MATLAB version 2016b installed. The entire computation of this

example takes 4.02 seconds. The simulation time is much faster than

the first example, because the problem size is smaller.

6 | CONCLUSIONS

We study the local well-posedness of OCDE under several classical local

optimality conditions, including LICQ, SCC and SOSC. The KKT condi-

tions are used to transform the OCDE into a CS. With the help of the

derived CS, we show that: (a) a local solution of the original OCDE is

locally well-posed, when LICQ, SCC and SOSC hold. In this case the local

solution of OCDE is identical to an index-1 DAE mode of the derived

CS. (b) A local solution of OCDE exists, when LICQ, SOSC and TC hold

but SCC fails. In this case, the local solution can be constructed by mode

switch. We propose a numerical algorithm, which is implemented in

MATLAB as a toolbox. We present two contrived numerical examples

and three engineering applications, two from systems biotechnology and

one from a flash unit operation in chemical engineering.

The presented results can be extended in the following directions.

First, OCDE requires the embedded optimization problem to be

solved to global optimality, while the proposed conditions in this arti-

cle ensure only local optimality. It is possible that a local minimizer of

the embedded optimization problem loses global optimality along the

solution trajectory by using the proposed method (Example 3 in the

Supplemental Material). Second, only regular points and a special type

of degenerated KKT points are considered. There exist other types of

degenerated critical points22 for the lower-level optimization problem,

which have not been treated in this work. Third, for the case that SCC

fails, the local uniqueness property of OCDE has not been established

and multiple solutions seem to be possible. At the end, we assume

LICQ condition in the article. But this seems to be a too-strong condi-

tion for typical DFBA models, see for example.20 If LICQ is violated,

Lagrange multipliers become non-unique and the derived DAE mode

of CS becomes a non-deterministic system. Finally, the extension of

the proposed analysis to treat local minima when LICQ fails is relevant

to engineering applications and is challenging.
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