Home > Publications database > Structure and ion transport of lithium-rich Li1+Al Ti2−(PO4)3 with 0.3<x<0.5: A combined computational and experimental study > print |
001 | 878099 | ||
005 | 20240709081929.0 | ||
024 | 7 | _ | |a 10.1016/j.ssi.2019.115192 |2 doi |
024 | 7 | _ | |a 0167-2738 |2 ISSN |
024 | 7 | _ | |a 1872-7689 |2 ISSN |
024 | 7 | _ | |a 2128/25496 |2 Handle |
024 | 7 | _ | |a altmetric:76654170 |2 altmetric |
024 | 7 | _ | |a WOS:000517851600016 |2 WOS |
037 | _ | _ | |a FZJ-2020-02630 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Case, David |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Structure and ion transport of lithium-rich Li1+Al Ti2−(PO4)3 with 0.3 |
260 | _ | _ | |a Amsterdam [u.a.] |c 2020 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1597326966_6688 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a New solid state electrolytes are becoming increasingly sought after in the drive to replace flammable liquid electrolytes. To this end, several Li conducting solids have been identified as promising candidates including Li stuffed garnets and more recently Li-rich materials such as Li1+xAlxTi2−x(PO4)3 with 0.3< x <0.5. However, the structure/property relationships of LATP are incredibly sensitive to synthesis conditions and therefore challenging to optimise. In this joint computational and experimental investigation, we examine the structural sensitivities by modelling the site occupancies at varying temperature, which clarifies previously reported discrepancies of the crystal structures. Furthermore, we investigate the Li ion transport properties which have not reported computationally before. We confirm from our simulations that the migration pathway only involves the M1(6b) and M2(18e) site, in excellent agreement with the neutron diffraction data, clarifying all past controversies regarding the Li ion occupancies in LATP. Interestingly, we calculate low migration barriers (0.3 eV) in line with experimental findings but also show evidence of Li ion trapping on Al doping in LATP (where x = 0.4), possibly explaining the experimental observation that the Li ion conductivity does not improve above x = 0.3, due to a stronger repulsion between Li+–>Ti4+ compared to Li+–>Al3+. Furthermore, our calculated ionic conductivities are in excellent agreement with experimental values, highlighting the robustness of our computational models. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a McSloy, Adam J. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Sharpe, Ryan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Yeandel, Stephen R. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Bartlett, Thomas |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Cookson, James |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Dashjav, Enkhtsetseg |0 P:(DE-Juel1)156509 |b 6 |u fzj |
700 | 1 | _ | |a Tietz, Frank |0 P:(DE-Juel1)129667 |b 7 |u fzj |
700 | 1 | _ | |a Naveen Kumar, C. M. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Goddard, Pooja |0 P:(DE-HGF)0 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.ssi.2019.115192 |g Vol. 346, p. 115192 - |0 PERI:(DE-600)1500750-9 |p 115192 |t Solid state ionics |v 346 |y 2020 |x 0167-2738 |
856 | 4 | _ | |y Published on 2020-01-10. Available in OpenAccess from 2022-01-10. |u https://juser.fz-juelich.de/record/878099/files/Structure%20and%20Ion%20Transport%20of%20LATP.pdf |
856 | 4 | _ | |y Published on 2020-01-10. Available in OpenAccess from 2022-01-10. |x pdfa |u https://juser.fz-juelich.de/record/878099/files/Structure%20and%20Ion%20Transport%20of%20LATP.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:878099 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)156509 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129667 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2019-12-21 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SOLID STATE IONICS : 2018 |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2019-12-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2019-12-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2019-12-21 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2019-12-21 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2019-12-21 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2019-12-21 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2019-12-21 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|