Home > Publications database > Evaluating DCA-based method performances for RNA contact prediction by a well-curated data set > print |
001 | 878102 | ||
005 | 20220930130246.0 | ||
024 | 7 | _ | |a 10.1261/rna.073809.119 |2 doi |
024 | 7 | _ | |a 1355-8382 |2 ISSN |
024 | 7 | _ | |a 1469-9001 |2 ISSN |
024 | 7 | _ | |a altmetric:79607459 |2 altmetric |
024 | 7 | _ | |a pmid:32276988 |2 pmid |
024 | 7 | _ | |a WOS:000541897400003 |2 WOS |
037 | _ | _ | |a FZJ-2020-02633 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Pucci, Fabrizio |0 P:(DE-Juel1)177018 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Evaluating DCA-based method performances for RNA contact prediction by a well-curated data set |
260 | _ | _ | |a Stanford, Calif. |c 2020 |b HighWire Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1601908059_7720 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a RNA molecules play many pivotal roles in a cell that are still not fully understood. Any detailed understanding of RNA function requires knowledge of its three-dimensional structure, yet experimental RNA structure resolution remains demanding. Recent advances in sequencing provide unprecedented amounts of sequence data that can be statistically analyzed by methods such as direct coupling analysis (DCA) to determine spatial proximity or contacts of specific nucleic acid pairs, which improve the quality of structure prediction. To quantify this structure prediction improvement, we here present a well curated data set of about 70 RNA structures of high resolution and compare different nucleotide–nucleotide contact prediction methods available in the literature. We observe only minor differences between the performances of the different methods. Moreover, we discuss how robust these predictions are for different contact definitions and how strongly they depend on procedures used to curate and align the families of homologous RNA sequences. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |a Forschergruppe Schug (hkf6_20170901) |0 G:(DE-Juel1)hkf6_20170901 |c hkf6_20170901 |f Forschergruppe Schug |x 1 |
536 | _ | _ | |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |x 2 |c PHD-NO-GRANT-20170405 |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Zerihun, Mehari B. |0 P:(DE-Juel1)179110 |b 1 |u fzj |
700 | 1 | _ | |a Peter, Emanuel K. |0 P:(DE-Juel1)177673 |b 2 |u fzj |
700 | 1 | _ | |a Schug, Alexander |0 P:(DE-Juel1)173652 |b 3 |u fzj |
773 | _ | _ | |a 10.1261/rna.073809.119 |g Vol. 26, no. 7, p. 794 - 802 |0 PERI:(DE-600)1475737-0 |n 7 |p 794 - 802 |t RNA |v 26 |y 2020 |x 1469-9001 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878102/files/Invoice_1167156_e43024.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878102/files/Invoice_1167156_e43024.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878102/files/RNA_DCA_Revision.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878102/files/RNA_DCA_Revision.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:878102 |p VDB |p OpenAPC |p openCost |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)177018 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)179110 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)177673 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)173652 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b RNA : 2018 |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2019-12-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2019-12-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2019-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2019-12-21 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2019-12-21 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|