001     878111
005     20210130005405.0
024 7 _ |a 10.3389/fphys.2020.00892
|2 doi
024 7 _ |a 2128/25376
|2 Handle
024 7 _ |a pmid:32848847
|2 pmid
024 7 _ |a WOS:000561341200001
|2 WOS
024 7 _ |a altmetric:86652864
|2 altmetric
037 _ _ |a FZJ-2020-02638
082 _ _ |a 610
100 1 _ |a Fahlke, Christoph
|0 P:(DE-Juel1)136837
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Membrane Physiology and Biophysics—What Remains to Be Done?
260 _ _ |a Lausanne
|c 2020
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1595925464_3761
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Biological membranes consist of lipid bilayer matrices enriched with integral membrane proteins and membrane-associated proteins. They not only define cells and cell organelles but also represent the main contact area for intercellular communication, for which membrane transport and signaling are indispensable. Because of their high physiological importance and unique physical and chemical properties, biological membranes have been intensively studied for over 100 years, and membrane physiology remains a flourishing and lively research field. Recent years have witnessed great progress in our understanding of the biophysical basis of membrane transport and its role in generating biological electricity and controlling the intracellular milieu. The workings of ion channels and transporters are understood in a degree of detail that was unimaginable when many of us started our scientific careers. Protein sequences and three-dimensional structures are now available for almost every major ion channel and transporter family (Navratna and Gouaux, 2019). Heterologous expression systems and patch clamp electrophysiology can provide functional data of unprecedented accuracy (Neher, 1992; Sakmann, 1992). The identification of amino acid sequences that direct ion channels and transporters to specific intracellular membrane compartments has enabled ion transport proteins that normally reside in intracellular membranes (such as synaptic vesicles or lysosomes) to be expressed and studied on the plasma membrane of mammalian cells (Leisle et al., 2011; Guzman et al., 2015; Eriksen et al., 2016). Moreover, advances in live-cell imaging enable the real-time visualization of intracellular trafficking of ion channels and transporters from protein translation in the endoplasmic reticulum to their arrival at the plasma membrane or site of action (Xiao and Shaw, 2015; Conrad et al., 2018).
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
773 _ _ |a 10.3389/fphys.2020.00892
|g Vol. 11, p. 892
|0 PERI:(DE-600)2564217-0
|p 892
|t Frontiers in physiology
|v 11
|y 2020
|x 1664-042X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878111/files/fphys-11-00892.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878111/files/fphys-11-00892.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878111
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)136837
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT PHYSIOL : 2018
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-01-05
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-1-20200312
|k IBI-1
|l Molekular- und Zellphysiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-1-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21