000878113 001__ 878113
000878113 005__ 20230522110533.0
000878113 0247_ $$2doi$$a10.1021/acsaelm.9b00824
000878113 0247_ $$2Handle$$a2128/25549
000878113 0247_ $$2WOS$$aWOS:000529879600005
000878113 037__ $$aFZJ-2020-02640
000878113 082__ $$a620
000878113 1001_ $$0P:(DE-Juel1)166417$$aJanssen, Johanna$$b0$$eCorresponding author$$ufzj
000878113 245__ $$aLow-Temperature Ohmic Contacts to n -ZnSe for all-Electrical Quantum Devices
000878113 260__ $$aWashington, DC$$bACS Publications$$c2020
000878113 3367_ $$2DRIVER$$aarticle
000878113 3367_ $$2DataCite$$aOutput Types/Journal article
000878113 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599463496_14836
000878113 3367_ $$2BibTeX$$aARTICLE
000878113 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878113 3367_ $$00$$2EndNote$$aJournal Article
000878113 520__ $$aThe II/VI semiconductor ZnSe is an ideal host for novel devices for quantum computation and communication as it can be made nuclear-spin free to obtain long electron spin coherence times, exhibits no electron valley-degeneracy, and allows optical access. A prerequisite to electrical quantum devices is low-resistive Ohmic contacts operating at temperatures below 10 K, which have not been achieved in ZnSe yet. Here, we present a comprehensive study on the realization of Ohmic contacts to ZnSe by three different technological approaches, ion implantation of halogen donors, epitaxial doping with in situ contact processing, and finally, a unique ZnSe regrowth technique. The latter allows fabrication of Ohmic contacts with local doping that can be used to connect to a buried conducting channel such as those used in unipolar devices. DC measurements revealed high contact resistivity for Ohmic contacts to ZnSe doped via halogene ion implantation, while in situ aluminum (Al) contacts on epitaxially chlorine-doped ZnSe yield record low contact resistivities in the order of 10–5 Ω cm2 even at cryogenic temperatures. Finally, making use of the regrowth technique, local Ohmic contacts to ZnSe are demonstrated, which still feature low contact resistivities of (1.4 ± 0.4) × 10–3 Ω cm2 at 4 K. These findings pave the way for new electrical devices in the ZnSe material system such as field-effect transistors, electrostatically defined qubits, or quantum repeaters operating at cryogenic temperatures.
000878113 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000878113 536__ $$0G:(GEPRIS)337456818$$aDFG project 337456818 - Entwicklung von Spin-Qubit Bauelementen aus ZnSe/$$c337456818$$x1
000878113 588__ $$aDataset connected to CrossRef
000878113 7001_ $$0P:(DE-HGF)0$$aHartz, Felix$$b1
000878113 7001_ $$0P:(DE-Juel1)180702$$aHuckemann, Till$$b2$$ufzj
000878113 7001_ $$0P:(DE-HGF)0$$aKamphausen, Christian$$b3
000878113 7001_ $$0P:(DE-HGF)0$$aNeul, Malte$$b4
000878113 7001_ $$0P:(DE-Juel1)172641$$aSchreiber, Lars R.$$b5$$ufzj
000878113 7001_ $$0P:(DE-Juel1)166158$$aPawlis, Alexander$$b6$$eCorresponding author
000878113 773__ $$0PERI:(DE-600)2949097-2$$a10.1021/acsaelm.9b00824$$gVol. 2, no. 4, p. 898 - 905$$n4$$p898 - 905$$tACS applied electronic materials$$v2$$x2637-6113$$y2020
000878113 8564_ $$uhttps://juser.fz-juelich.de/record/878113/files/acsaelm.9b00824.pdf$$yRestricted
000878113 8564_ $$uhttps://juser.fz-juelich.de/record/878113/files/manuscript_SI.pdf$$yPublished on 2020-03-02. Available in OpenAccess from 2021-03-02.
000878113 8564_ $$uhttps://juser.fz-juelich.de/record/878113/files/manuscript_revision.pdf$$yPublished on 2020-03-02. Available in OpenAccess from 2021-03-02.
000878113 8564_ $$uhttps://juser.fz-juelich.de/record/878113/files/acsaelm.9b00824.pdf?subformat=pdfa$$xpdfa$$yRestricted
000878113 8564_ $$uhttps://juser.fz-juelich.de/record/878113/files/manuscript_SI.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-03-02. Available in OpenAccess from 2021-03-02.
000878113 8564_ $$uhttps://juser.fz-juelich.de/record/878113/files/manuscript_revision.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-03-02. Available in OpenAccess from 2021-03-02.
000878113 909CO $$ooai:juser.fz-juelich.de:878113$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166417$$aForschungszentrum Jülich$$b0$$kFZJ
000878113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180702$$aForschungszentrum Jülich$$b2$$kFZJ
000878113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172641$$aForschungszentrum Jülich$$b5$$kFZJ
000878113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166158$$aForschungszentrum Jülich$$b6$$kFZJ
000878113 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000878113 9141_ $$y2020
000878113 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878113 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-02
000878113 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-02
000878113 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-01-02
000878113 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-02
000878113 920__ $$lyes
000878113 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000878113 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
000878113 980__ $$ajournal
000878113 980__ $$aVDB
000878113 980__ $$aUNRESTRICTED
000878113 980__ $$aI:(DE-Juel1)PGI-9-20110106
000878113 980__ $$aI:(DE-Juel1)PGI-11-20170113
000878113 9801_ $$aFullTexts