001     878113
005     20230522110533.0
024 7 _ |a 10.1021/acsaelm.9b00824
|2 doi
024 7 _ |a 2128/25549
|2 Handle
024 7 _ |a WOS:000529879600005
|2 WOS
037 _ _ |a FZJ-2020-02640
082 _ _ |a 620
100 1 _ |a Janssen, Johanna
|0 P:(DE-Juel1)166417
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Low-Temperature Ohmic Contacts to n -ZnSe for all-Electrical Quantum Devices
260 _ _ |a Washington, DC
|c 2020
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599463496_14836
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The II/VI semiconductor ZnSe is an ideal host for novel devices for quantum computation and communication as it can be made nuclear-spin free to obtain long electron spin coherence times, exhibits no electron valley-degeneracy, and allows optical access. A prerequisite to electrical quantum devices is low-resistive Ohmic contacts operating at temperatures below 10 K, which have not been achieved in ZnSe yet. Here, we present a comprehensive study on the realization of Ohmic contacts to ZnSe by three different technological approaches, ion implantation of halogen donors, epitaxial doping with in situ contact processing, and finally, a unique ZnSe regrowth technique. The latter allows fabrication of Ohmic contacts with local doping that can be used to connect to a buried conducting channel such as those used in unipolar devices. DC measurements revealed high contact resistivity for Ohmic contacts to ZnSe doped via halogene ion implantation, while in situ aluminum (Al) contacts on epitaxially chlorine-doped ZnSe yield record low contact resistivities in the order of 10–5 Ω cm2 even at cryogenic temperatures. Finally, making use of the regrowth technique, local Ohmic contacts to ZnSe are demonstrated, which still feature low contact resistivities of (1.4 ± 0.4) × 10–3 Ω cm2 at 4 K. These findings pave the way for new electrical devices in the ZnSe material system such as field-effect transistors, electrostatically defined qubits, or quantum repeaters operating at cryogenic temperatures.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|x 0
|f POF III
536 _ _ |a DFG project 337456818 - Entwicklung von Spin-Qubit Bauelementen aus ZnSe/
|0 G:(GEPRIS)337456818
|c 337456818
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hartz, Felix
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Huckemann, Till
|0 P:(DE-Juel1)180702
|b 2
|u fzj
700 1 _ |a Kamphausen, Christian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Neul, Malte
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schreiber, Lars R.
|0 P:(DE-Juel1)172641
|b 5
|u fzj
700 1 _ |a Pawlis, Alexander
|0 P:(DE-Juel1)166158
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acsaelm.9b00824
|g Vol. 2, no. 4, p. 898 - 905
|0 PERI:(DE-600)2949097-2
|n 4
|p 898 - 905
|t ACS applied electronic materials
|v 2
|y 2020
|x 2637-6113
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/878113/files/acsaelm.9b00824.pdf
856 4 _ |y Published on 2020-03-02. Available in OpenAccess from 2021-03-02.
|u https://juser.fz-juelich.de/record/878113/files/manuscript_SI.pdf
856 4 _ |y Published on 2020-03-02. Available in OpenAccess from 2021-03-02.
|u https://juser.fz-juelich.de/record/878113/files/manuscript_revision.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/878113/files/acsaelm.9b00824.pdf?subformat=pdfa
856 4 _ |y Published on 2020-03-02. Available in OpenAccess from 2021-03-02.
|x pdfa
|u https://juser.fz-juelich.de/record/878113/files/manuscript_SI.pdf?subformat=pdfa
856 4 _ |y Published on 2020-03-02. Available in OpenAccess from 2021-03-02.
|x pdfa
|u https://juser.fz-juelich.de/record/878113/files/manuscript_revision.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878113
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166417
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180702
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172641
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166158
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21