000878123 001__ 878123
000878123 005__ 20240711092259.0
000878123 0247_ $$2Handle$$a2128/25479
000878123 0247_ $$2URN$$aurn:nbn:de:0001-2020081204
000878123 0247_ $$2ISSN$$a1866-1793
000878123 020__ $$a978-3-95806-484-3
000878123 037__ $$aFZJ-2020-02641
000878123 041__ $$aEnglish
000878123 1001_ $$0P:(DE-Juel1)171373$$aYan, Gang$$b0$$eCorresponding author$$ufzj
000878123 245__ $$aMechanical Behavior of Solid Electrolyte Materials for Lithium-ion Batteries$$f- 2020-08-12
000878123 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2020
000878123 300__ $$ax, 139 S.
000878123 3367_ $$2DataCite$$aOutput Types/Dissertation
000878123 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000878123 3367_ $$2ORCID$$aDISSERTATION
000878123 3367_ $$2BibTeX$$aPHDTHESIS
000878123 3367_ $$02$$2EndNote$$aThesis
000878123 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1597209666_10913
000878123 3367_ $$2DRIVER$$adoctoralThesis
000878123 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v500
000878123 502__ $$aRWTH Aachen, Diss., 2020$$bDissertation$$cRWTH Aachen$$d2020
000878123 520__ $$aAll solid-state lithium-ion batteries (ASSLIBs) being based on solid state electrolytes are at present regarded as a promising alternative for conventional batteries on account of their higher ionic  conductivity,  energy  density  as  well  as  higher  chemical  stability  and  safety.  The  solid electrolytes are expected to possess enhanced ionic conductivity and in addition a mechanical stability  that  warrants  a  safer  separation  of  electrodes  and  is  envisaged  to  permit  them  to withstand long-term cycling operation. However, in contrast to the widely investigated electro-chemical  properties  of  solid  electrolytes,  the  mechanical  properties,  which  are  important  for long-term  reliability,  need  to  be  studied  deeper.  Hence,  the  main  aim  of  this  work  is  the mechanical characterization of respective ceramic materials as candidates for solid electrolytes and  the  relationship  to  materials’  microstructures.  For  this  purpose  three  types  of  solid electrolytes,  NASICON  type  Li$_{1+x}$Al$_{x}$Ti$_{2-x}$(PO$_{4)3}$  (LATP),  garnet  type  Li$_{7}$La$_{3}$Zr$_{2}$O$_{12}$  (LLZO), perovskite  type  Li$_{0.350}$La$_{0.557}$TiO$_{3}$  (LLTO),  were  chosen  due  to  their  previously  verified promising electro-chemical properties.  With  the  aim  of  understanding  the  mechanical  properties  of  the  LATP  material,  LATPs sintered at different temperatures (950 –1100 °C) were characterized via indentation method in this work. The results revealed that LATP sintered at higher temperature possesses higher elastic modulus, hardness and fracture toughness. The anisotropy of the mechanical properties of the solid electrolyte material LATP sintered at 1100 °C was investigated in this work via indentation mapping  test  in  a  depth  control  mode  at  room  temperature  with  associated  EBSD characterization.  The  experimentally  derived  elastic  modulus  and  hardness  of  LATP  show similar trends, i.e. that the rotation angle between two prismatic type planes had no detectable influence, whereas when the rotation angle from basal plane to prismatic plane increased, elastic modulus and hardness value decrease conspicuously.  Furthermore, to assess the fracture reliability of electrolytes, Li$_{1.5}$Al$_{0.5}$Ti$_{1.5}$P$_{3}$O$_{12}$ mixed with SiO$_{2}$ (LATP:Si) and a LLZO material were selected to investigate the macroscopic mechanical properties,  concentrating  on  fracture  strength  and  Weibull  modulus.  The  Weibull  moduli  of LATP:Si and LLZO are in a similar range as for other ceramic materials, whereas the fractur [...]
000878123 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000878123 8564_ $$uhttps://juser.fz-juelich.de/record/878123/files/Energie_Umwelt_500.pdf$$yOpenAccess
000878123 8564_ $$uhttps://juser.fz-juelich.de/record/878123/files/Energie_Umwelt_500.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878123 909CO $$ooai:juser.fz-juelich.de:878123$$pdnbdelivery$$pVDB$$pdriver$$purn$$popen_access$$popenaire
000878123 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878123 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878123 9141_ $$y2020
000878123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171373$$aForschungszentrum Jülich$$b0$$kFZJ
000878123 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000878123 920__ $$lyes
000878123 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000878123 9801_ $$aFullTexts
000878123 980__ $$aphd
000878123 980__ $$aVDB
000878123 980__ $$aUNRESTRICTED
000878123 980__ $$abook
000878123 980__ $$aI:(DE-Juel1)IEK-2-20101013
000878123 981__ $$aI:(DE-Juel1)IMD-1-20101013