000878132 001__ 878132 000878132 005__ 20210130005412.0 000878132 0247_ $$2doi$$a10.1103/PhysRevX.10.031019 000878132 0247_ $$2Handle$$a2128/25568 000878132 0247_ $$2altmetric$$aaltmetric:86402358 000878132 0247_ $$2WOS$$aWOS:000552226600001 000878132 037__ $$aFZJ-2020-02650 000878132 082__ $$a530 000878132 1001_ $$00000-0001-9417-6514$$aZákutná, Dominika$$b0 000878132 245__ $$aField Dependence of Magnetic Disorder in Nanoparticles 000878132 260__ $$aCollege Park, Md.$$bAPS$$c2020 000878132 3367_ $$2DRIVER$$aarticle 000878132 3367_ $$2DataCite$$aOutput Types/Journal article 000878132 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599545508_32472 000878132 3367_ $$2BibTeX$$aARTICLE 000878132 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000878132 3367_ $$00$$2EndNote$$aJournal Article 000878132 520__ $$aThe performance characteristics of magnetic nanoparticles toward application, e.g., in medicine and imaging or as sensors, are directly determined by their magnetization relaxation and total magnetic moment. In the commonly assumed picture, nanoparticles have a constant overall magnetic moment originating from the magnetization of the single-domain particle core surrounded by a surface region hosting spin disorder. In contrast, this work demonstrates the significant increase of the magnetic moment of ferrite nanoparticles with an applied magnetic field. At low magnetic field, the homogeneously magnetized particle core initially coincides in size with the structurally coherent grain of 12.8(2) nm diameter, indicating a strong coupling between magnetic and structural disorder. Applied magnetic fields gradually polarize the uncorrelated, disordered surface spins, resulting in a magnetic volume more than 20% larger than the structurally coherent core. The intraparticle magnetic disorder energy increases sharply toward the defect-rich surface as established by the field dependence of the magnetization distribution. In consequence, these findings illustrate how the nanoparticle magnetization overcomes structural surface disorder. This new concept of intraparticle magnetization is deployable to other magnetic nanoparticle systems, where the in-depth knowledge of spin disorder and associated magnetic anisotropies are decisive for a rational nanomaterials design. 000878132 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0 000878132 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1 000878132 588__ $$aDataset connected to CrossRef 000878132 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0 000878132 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1 000878132 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x2 000878132 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0 000878132 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0 000878132 7001_ $$0P:(DE-HGF)0$$aNižňanský, Daniel$$b1 000878132 7001_ $$0P:(DE-Juel1)172014$$aBarnsley, Lester C.$$b2 000878132 7001_ $$0P:(DE-Juel1)130516$$aBabcock, Earl$$b3$$ufzj 000878132 7001_ $$0P:(DE-Juel1)144963$$aSalhi, Zahir$$b4$$ufzj 000878132 7001_ $$0P:(DE-Juel1)144382$$aFeoktystov, Artem$$b5 000878132 7001_ $$00000-0003-0763-982X$$aHonecker, Dirk$$b6 000878132 7001_ $$00000-0002-4565-189X$$aDisch, Sabrina$$b7$$eCorresponding author 000878132 773__ $$0PERI:(DE-600)2622565-7$$a10.1103/PhysRevX.10.031019$$gVol. 10, no. 3, p. 031019$$n3$$p031019$$tPhysical review / X Expanding access$$v10$$x2160-3308$$y2020 000878132 8564_ $$uhttps://juser.fz-juelich.de/record/878132/files/PhysRevX.10.031019.pdf$$yOpenAccess 000878132 8564_ $$uhttps://juser.fz-juelich.de/record/878132/files/S14_main_200517.pdf$$yOpenAccess 000878132 8564_ $$uhttps://juser.fz-juelich.de/record/878132/files/S14_main_200517.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000878132 8564_ $$uhttps://juser.fz-juelich.de/record/878132/files/PhysRevX.10.031019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000878132 909CO $$ooai:juser.fz-juelich.de:878132$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire 000878132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172014$$aForschungszentrum Jülich$$b2$$kFZJ 000878132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130516$$aForschungszentrum Jülich$$b3$$kFZJ 000878132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144963$$aForschungszentrum Jülich$$b4$$kFZJ 000878132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144382$$aForschungszentrum Jülich$$b5$$kFZJ 000878132 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0 000878132 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1 000878132 9141_ $$y2020 000878132 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-28 000878132 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-28 000878132 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000878132 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV X : 2018$$d2020-02-28 000878132 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bPHYS REV X : 2018$$d2020-02-28 000878132 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-02-28 000878132 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-02-28 000878132 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-28 000878132 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-28 000878132 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-02-28 000878132 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-28 000878132 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000878132 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-02-28 000878132 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-02-28 000878132 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-28 000878132 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-28 000878132 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-28 000878132 920__ $$lyes 000878132 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0 000878132 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1 000878132 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2 000878132 980__ $$ajournal 000878132 980__ $$aVDB 000878132 980__ $$aUNRESTRICTED 000878132 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000878132 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000878132 980__ $$aI:(DE-588b)4597118-3 000878132 9801_ $$aFullTexts