001 | 878132 | ||
005 | 20210130005412.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevX.10.031019 |2 doi |
024 | 7 | _ | |a 2128/25568 |2 Handle |
024 | 7 | _ | |a altmetric:86402358 |2 altmetric |
024 | 7 | _ | |a WOS:000552226600001 |2 WOS |
037 | _ | _ | |a FZJ-2020-02650 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Zákutná, Dominika |0 0000-0001-9417-6514 |b 0 |
245 | _ | _ | |a Field Dependence of Magnetic Disorder in Nanoparticles |
260 | _ | _ | |a College Park, Md. |c 2020 |b APS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1599545508_32472 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The performance characteristics of magnetic nanoparticles toward application, e.g., in medicine and imaging or as sensors, are directly determined by their magnetization relaxation and total magnetic moment. In the commonly assumed picture, nanoparticles have a constant overall magnetic moment originating from the magnetization of the single-domain particle core surrounded by a surface region hosting spin disorder. In contrast, this work demonstrates the significant increase of the magnetic moment of ferrite nanoparticles with an applied magnetic field. At low magnetic field, the homogeneously magnetized particle core initially coincides in size with the structurally coherent grain of 12.8(2) nm diameter, indicating a strong coupling between magnetic and structural disorder. Applied magnetic fields gradually polarize the uncorrelated, disordered surface spins, resulting in a magnetic volume more than 20% larger than the structurally coherent core. The intraparticle magnetic disorder energy increases sharply toward the defect-rich surface as established by the field dependence of the magnetization distribution. In consequence, these findings illustrate how the nanoparticle magnetization overcomes structural surface disorder. This new concept of intraparticle magnetization is deployable to other magnetic nanoparticle systems, where the in-depth knowledge of spin disorder and associated magnetic anisotropies are decisive for a rational nanomaterials design. |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-HGF)POF3-6G15 |f POF III |x 1 |c POF3-6G15 |a 6G15 - FRM II / MLZ (POF3-6G15) |
588 | _ | _ | |a Dataset connected to CrossRef |
650 | 2 | 7 | |a Chemistry |0 V:(DE-MLZ)SciArea-110 |2 V:(DE-HGF) |x 0 |
650 | 2 | 7 | |a Magnetism |0 V:(DE-MLZ)SciArea-170 |2 V:(DE-HGF) |x 1 |
650 | 2 | 7 | |a Condensed Matter Physics |0 V:(DE-MLZ)SciArea-120 |2 V:(DE-HGF) |x 2 |
650 | 1 | 7 | |a Magnetic Materials |0 V:(DE-MLZ)GC-1604-2016 |2 V:(DE-HGF) |x 0 |
693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e KWS-1: Small angle scattering diffractometer |f NL3b |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)KWS1-20140101 |5 EXP:(DE-MLZ)KWS1-20140101 |6 EXP:(DE-MLZ)NL3b-20140101 |x 0 |
700 | 1 | _ | |a Nižňanský, Daniel |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Barnsley, Lester C. |0 P:(DE-Juel1)172014 |b 2 |
700 | 1 | _ | |a Babcock, Earl |0 P:(DE-Juel1)130516 |b 3 |u fzj |
700 | 1 | _ | |a Salhi, Zahir |0 P:(DE-Juel1)144963 |b 4 |u fzj |
700 | 1 | _ | |a Feoktystov, Artem |0 P:(DE-Juel1)144382 |b 5 |
700 | 1 | _ | |a Honecker, Dirk |0 0000-0003-0763-982X |b 6 |
700 | 1 | _ | |a Disch, Sabrina |0 0000-0002-4565-189X |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1103/PhysRevX.10.031019 |g Vol. 10, no. 3, p. 031019 |0 PERI:(DE-600)2622565-7 |n 3 |p 031019 |t Physical review / X Expanding access |v 10 |y 2020 |x 2160-3308 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/878132/files/PhysRevX.10.031019.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/878132/files/S14_main_200517.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/878132/files/S14_main_200517.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/878132/files/PhysRevX.10.031019.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:878132 |p openaire |p open_access |p driver |p VDB:MLZ |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172014 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130516 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)144963 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)144382 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |2 G:(DE-HGF)POF3-600 |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |9 G:(DE-HGF)POF3-6G15 |x 1 |4 G:(DE-HGF)POF |v FRM II / MLZ |1 G:(DE-HGF)POF3-6G0 |0 G:(DE-HGF)POF3-6G15 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |b Forschungsbereich Materie |l Großgeräte: Materie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-02-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-28 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV X : 2018 |d 2020-02-28 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b PHYS REV X : 2018 |d 2020-02-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-02-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-02-28 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-02-28 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-02-28 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-02-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-02-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2020-02-28 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |f 2020-02-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-02-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-02-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-02-28 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 1 |
920 | 1 | _ | |0 I:(DE-588b)4597118-3 |k MLZ |l Heinz Maier-Leibnitz Zentrum |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
980 | _ | _ | |a I:(DE-588b)4597118-3 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|