001     878132
005     20210130005412.0
024 7 _ |a 10.1103/PhysRevX.10.031019
|2 doi
024 7 _ |a 2128/25568
|2 Handle
024 7 _ |a altmetric:86402358
|2 altmetric
024 7 _ |a WOS:000552226600001
|2 WOS
037 _ _ |a FZJ-2020-02650
082 _ _ |a 530
100 1 _ |a Zákutná, Dominika
|0 0000-0001-9417-6514
|b 0
245 _ _ |a Field Dependence of Magnetic Disorder in Nanoparticles
260 _ _ |a College Park, Md.
|c 2020
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599545508_32472
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The performance characteristics of magnetic nanoparticles toward application, e.g., in medicine and imaging or as sensors, are directly determined by their magnetization relaxation and total magnetic moment. In the commonly assumed picture, nanoparticles have a constant overall magnetic moment originating from the magnetization of the single-domain particle core surrounded by a surface region hosting spin disorder. In contrast, this work demonstrates the significant increase of the magnetic moment of ferrite nanoparticles with an applied magnetic field. At low magnetic field, the homogeneously magnetized particle core initially coincides in size with the structurally coherent grain of 12.8(2) nm diameter, indicating a strong coupling between magnetic and structural disorder. Applied magnetic fields gradually polarize the uncorrelated, disordered surface spins, resulting in a magnetic volume more than 20% larger than the structurally coherent core. The intraparticle magnetic disorder energy increases sharply toward the defect-rich surface as established by the field dependence of the magnetization distribution. In consequence, these findings illustrate how the nanoparticle magnetization overcomes structural surface disorder. This new concept of intraparticle magnetization is deployable to other magnetic nanoparticle systems, where the in-depth knowledge of spin disorder and associated magnetic anisotropies are decisive for a rational nanomaterials design.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 1
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 0
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 1
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 2
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
700 1 _ |a Nižňanský, Daniel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Barnsley, Lester C.
|0 P:(DE-Juel1)172014
|b 2
700 1 _ |a Babcock, Earl
|0 P:(DE-Juel1)130516
|b 3
|u fzj
700 1 _ |a Salhi, Zahir
|0 P:(DE-Juel1)144963
|b 4
|u fzj
700 1 _ |a Feoktystov, Artem
|0 P:(DE-Juel1)144382
|b 5
700 1 _ |a Honecker, Dirk
|0 0000-0003-0763-982X
|b 6
700 1 _ |a Disch, Sabrina
|0 0000-0002-4565-189X
|b 7
|e Corresponding author
773 _ _ |a 10.1103/PhysRevX.10.031019
|g Vol. 10, no. 3, p. 031019
|0 PERI:(DE-600)2622565-7
|n 3
|p 031019
|t Physical review / X Expanding access
|v 10
|y 2020
|x 2160-3308
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878132/files/PhysRevX.10.031019.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878132/files/S14_main_200517.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878132/files/S14_main_200517.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878132/files/PhysRevX.10.031019.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878132
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172014
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130516
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144963
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144382
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 1
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV X : 2018
|d 2020-02-28
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b PHYS REV X : 2018
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-02-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-02-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-588b)4597118-3
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21