000878134 001__ 878134
000878134 005__ 20240313103129.0
000878134 0247_ $$2Handle$$a2128/25882
000878134 037__ $$aFZJ-2020-02652
000878134 041__ $$aEnglish
000878134 1001_ $$0P:(DE-Juel1)176593$$aMorales-Gregorio, Aitor$$b0$$eCorresponding author$$ufzj
000878134 1112_ $$a29th Annual Computational Neuroscience Meeting CNS*2020$$cOnline$$d2020-07-18 - 2020-07-23$$gCNS2020$$wOnline
000878134 245__ $$aEstimation of the cortical microconnectome from in vivo spiking activity in the macaque monkey
000878134 260__ $$c2020
000878134 3367_ $$033$$2EndNote$$aConference Paper
000878134 3367_ $$2BibTeX$$aINPROCEEDINGS
000878134 3367_ $$2DRIVER$$aconferenceObject
000878134 3367_ $$2ORCID$$aCONFERENCE_POSTER
000878134 3367_ $$2DataCite$$aOutput Types/Conference Poster
000878134 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1602688431_10132$$xAfter Call
000878134 502__ $$cRWTH Aachen
000878134 520__ $$aThe typical range of local connectivity in the cerebral cortex delineates columnar microcircuits, within which the layer- and population-specific connectivities present features that are preserved across species and cortical areas. However, when considered in more detail, the internal connectivity structure, i.e. the microconnectome (MC), of such microcircuits is variable across cortical areas. Furthermore, the parameters describing the MC are largely unknown for most cortical areas.Models constructed based on structural data have been able to recover realistic first-order spike train statistics in early sensory cortical areas [1, 2]. These bottom-up models can be constructed owing to the availability of extensive anatomical and physiological data from early visual and somatosensory areas. However, such measurements are less abundant for higher-order cortices, limiting bottom-up modeling until further biological measurements are published.Here we present an analysis that aims to overcome some of the limitations in currently available anatomical data. We use experimentally measured electrophysiological activity from vision-related and motor areas to constrain the connectivity of cortical microcircuit models and infer area-specific features of the MC. The novel experimental data consist of simultaneous layer-resolved laminar recordings from macaque primary motor (M1) and premotor (PMd) cortices [3]; as well as acute simultaneous recordings of macaque dorsolateral prefrontal cortex (dlPFC) and visual area V4. All data were recorded during resting-state sessions, i.e. while the subjects were not performing any task. Data from the resting state are expected to deliver rich dynamics related to the underlying connectivity structure [4].We explore the parameter space of the MC with an evolutionary algorithm using biologically inspired spiking cortical microcircuit models. During the parameter estimation phase, a set of standardized statistical tests, based on established single-neuron and population statistics [5], are used to score the similarity between the simulated data and experimental recordings. The score is calculated based on the overlap between experimental and simulated data statistics via the Wasserstein distance. Parameter estimates are obtained by maximizing this score, and are then validated against a separate set of statistics, which were not used in the estimation phase. Finally, we assess the similarities and differences of estimated model parameters across areas.Future work will integrate these local visual and motor models into a large-scale visuomotor cortical multi-area model, extending the work in [2, 6].References:1. Potjans TC, Diesmann M. Cereb Cortex 2014, 24(3), 785–8062. Schmidt M, Bakker R et al. Brain Struct Func 2017, 223, 1409–14353. Kilavik BE. SfN 2018. Online4. Dąbrowska P, Voges N et al. On the complexity of resting state spiking activity in monkey motor cortex. In preparation5. Gutzen R, von Papen M et al. Front Neuroinform 2018, 12:906. Schmidt M, Bakker R et al. PLOS CB 2018, 14, e1006359
000878134 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000878134 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000878134 536__ $$0G:(GEPRIS)347572269$$aSPP 2041 347572269 - Integration von Multiskalen-Konnektivität und Gehirnarchitektur in einem supercomputergestützten Modell der menschlichen Großhirnrinde (347572269)$$c347572269$$x2
000878134 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x3
000878134 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x4
000878134 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x5
000878134 536__ $$0G:(EU-Grant)825207$$aFLAG-ERA III - The Flagship ERA-NET — FLAG-ERA III (825207)$$c825207$$fH2020-FETFLAG-2018-02$$x6
000878134 7001_ $$0P:(DE-Juel1)171408$$aDabrowska, Paulina$$b1$$ufzj
000878134 7001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b2$$ufzj
000878134 7001_ $$0P:(DE-Juel1)161462$$aYegenoglu, Alper$$b3$$ufzj
000878134 7001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b4$$ufzj
000878134 7001_ $$0P:(DE-HGF)0$$aPalmis, Sarah$$b5
000878134 7001_ $$0P:(DE-HGF)0$$aPaneri, Sofia$$b6
000878134 7001_ $$0P:(DE-Juel1)178936$$aRene, Alexandre$$b7$$ufzj
000878134 7001_ $$0P:(DE-HGF)0$$aSapountzis, Panagiotis$$b8
000878134 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b9$$ufzj
000878134 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b10$$ufzj
000878134 7001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b11$$ufzj
000878134 7001_ $$0P:(DE-HGF)0$$aGregoriou, Georgia$$b12
000878134 7001_ $$0P:(DE-HGF)0$$aKilavik, Bjorg$$b13
000878134 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b14$$ufzj
000878134 8564_ $$uhttps://juser.fz-juelich.de/record/878134/files/MoralesGregorio_CNS2020_P14.pdf$$yOpenAccess
000878134 8564_ $$uhttps://juser.fz-juelich.de/record/878134/files/MoralesGregorio_CNS2020_P14.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878134 909CO $$ooai:juser.fz-juelich.de:878134$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000878134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176593$$aForschungszentrum Jülich$$b0$$kFZJ
000878134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171408$$aForschungszentrum Jülich$$b1$$kFZJ
000878134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b2$$kFZJ
000878134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161462$$aForschungszentrum Jülich$$b3$$kFZJ
000878134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b4$$kFZJ
000878134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178936$$aForschungszentrum Jülich$$b7$$kFZJ
000878134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b9$$kFZJ
000878134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b10$$kFZJ
000878134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b11$$kFZJ
000878134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b14$$kFZJ
000878134 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000878134 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000878134 9141_ $$y2020
000878134 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878134 920__ $$lyes
000878134 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000878134 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000878134 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000878134 9801_ $$aFullTexts
000878134 980__ $$aposter
000878134 980__ $$aVDB
000878134 980__ $$aUNRESTRICTED
000878134 980__ $$aI:(DE-Juel1)INM-6-20090406
000878134 980__ $$aI:(DE-Juel1)IAS-6-20130828
000878134 980__ $$aI:(DE-Juel1)INM-10-20170113
000878134 981__ $$aI:(DE-Juel1)IAS-6-20130828