001     878134
005     20240313103129.0
024 7 _ |a 2128/25882
|2 Handle
037 _ _ |a FZJ-2020-02652
041 _ _ |a English
100 1 _ |a Morales-Gregorio, Aitor
|0 P:(DE-Juel1)176593
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 29th Annual Computational Neuroscience Meeting CNS*2020
|g CNS2020
|c Online
|d 2020-07-18 - 2020-07-23
|w Online
245 _ _ |a Estimation of the cortical microconnectome from in vivo spiking activity in the macaque monkey
260 _ _ |c 2020
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1602688431_10132
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a The typical range of local connectivity in the cerebral cortex delineates columnar microcircuits, within which the layer- and population-specific connectivities present features that are preserved across species and cortical areas. However, when considered in more detail, the internal connectivity structure, i.e. the microconnectome (MC), of such microcircuits is variable across cortical areas. Furthermore, the parameters describing the MC are largely unknown for most cortical areas.Models constructed based on structural data have been able to recover realistic first-order spike train statistics in early sensory cortical areas [1, 2]. These bottom-up models can be constructed owing to the availability of extensive anatomical and physiological data from early visual and somatosensory areas. However, such measurements are less abundant for higher-order cortices, limiting bottom-up modeling until further biological measurements are published.Here we present an analysis that aims to overcome some of the limitations in currently available anatomical data. We use experimentally measured electrophysiological activity from vision-related and motor areas to constrain the connectivity of cortical microcircuit models and infer area-specific features of the MC. The novel experimental data consist of simultaneous layer-resolved laminar recordings from macaque primary motor (M1) and premotor (PMd) cortices [3]; as well as acute simultaneous recordings of macaque dorsolateral prefrontal cortex (dlPFC) and visual area V4. All data were recorded during resting-state sessions, i.e. while the subjects were not performing any task. Data from the resting state are expected to deliver rich dynamics related to the underlying connectivity structure [4].We explore the parameter space of the MC with an evolutionary algorithm using biologically inspired spiking cortical microcircuit models. During the parameter estimation phase, a set of standardized statistical tests, based on established single-neuron and population statistics [5], are used to score the similarity between the simulated data and experimental recordings. The score is calculated based on the overlap between experimental and simulated data statistics via the Wasserstein distance. Parameter estimates are obtained by maximizing this score, and are then validated against a separate set of statistics, which were not used in the estimation phase. Finally, we assess the similarities and differences of estimated model parameters across areas.Future work will integrate these local visual and motor models into a large-scale visuomotor cortical multi-area model, extending the work in [2, 6].References:1. Potjans TC, Diesmann M. Cereb Cortex 2014, 24(3), 785–8062. Schmidt M, Bakker R et al. Brain Struct Func 2017, 223, 1409–14353. Kilavik BE. SfN 2018. Online4. Dąbrowska P, Voges N et al. On the complexity of resting state spiking activity in monkey motor cortex. In preparation5. Gutzen R, von Papen M et al. Front Neuroinform 2018, 12:906. Schmidt M, Bakker R et al. PLOS CB 2018, 14, e1006359
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|x 0
|f POF III
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|x 1
|f POF III
536 _ _ |a SPP 2041 347572269 - Integration von Multiskalen-Konnektivität und Gehirnarchitektur in einem supercomputergestützten Modell der menschlichen Großhirnrinde (347572269)
|0 G:(GEPRIS)347572269
|c 347572269
|x 2
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 3
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|x 4
|f H2020-SGA-FETFLAG-HBP-2017
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 5
536 _ _ |a FLAG-ERA III - The Flagship ERA-NET — FLAG-ERA III (825207)
|0 G:(EU-Grant)825207
|c 825207
|x 6
|f H2020-FETFLAG-2018-02
700 1 _ |a Dabrowska, Paulina
|0 P:(DE-Juel1)171408
|b 1
|u fzj
700 1 _ |a Gutzen, Robin
|0 P:(DE-Juel1)171572
|b 2
|u fzj
700 1 _ |a Yegenoglu, Alper
|0 P:(DE-Juel1)161462
|b 3
|u fzj
700 1 _ |a Diaz, Sandra
|0 P:(DE-Juel1)165859
|b 4
|u fzj
700 1 _ |a Palmis, Sarah
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Paneri, Sofia
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rene, Alexandre
|0 P:(DE-Juel1)178936
|b 7
|u fzj
700 1 _ |a Sapountzis, Panagiotis
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 9
|u fzj
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 10
|u fzj
700 1 _ |a Senk, Johanna
|0 P:(DE-Juel1)162130
|b 11
|u fzj
700 1 _ |a Gregoriou, Georgia
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kilavik, Bjorg
|0 P:(DE-HGF)0
|b 13
700 1 _ |a van Albada, Sacha
|0 P:(DE-Juel1)138512
|b 14
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878134/files/MoralesGregorio_CNS2020_P14.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878134/files/MoralesGregorio_CNS2020_P14.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878134
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176593
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171408
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161462
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165859
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)178936
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)144168
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)162130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)138512
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21