000878136 001__ 878136
000878136 005__ 20210130005414.0
000878136 0247_ $$2doi$$a10.1364/BOE.397604
000878136 0247_ $$2Handle$$a2128/25404
000878136 0247_ $$2altmetric$$aaltmetric:86704587
000878136 0247_ $$2pmid$$apmid:32923075
000878136 0247_ $$2WOS$$aWOS:000577451600048
000878136 037__ $$aFZJ-2020-02654
000878136 082__ $$a610
000878136 1001_ $$0P:(DE-Juel1)161196$$aMenzel, Miriam$$b0$$eCorresponding author
000878136 245__ $$aCoherent Fourier scatterometry reveals nerve fiber crossings in the brain
000878136 260__ $$aWashington, DC$$bOSA$$c2020
000878136 3367_ $$2DRIVER$$aarticle
000878136 3367_ $$2DataCite$$aOutput Types/Journal article
000878136 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596106221_15847
000878136 3367_ $$2BibTeX$$aARTICLE
000878136 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878136 3367_ $$00$$2EndNote$$aJournal Article
000878136 520__ $$aPrevious simulation studies by Menzel et al. [Phys. Rev. X 10, 021002 (2020)] have shown that scattering patterns of light transmitted through artificial nerve fiber constellations contain valuable information about the tissue substructure such as the individual fiber orientations in regions with crossing nerve fibers. Here, we present a method that measures these scattering patterns in monkey and human brain tissue using coherent Fourier scatterometry with normally incident light. By transmitting a non-focused laser beam (λ = 633 nm) through unstained histological brain sections, we measure the scattering patterns for small tissue regions (with diameters of 0.1–1 mm), and show that they are in accordance with the simulated scattering patterns. We reveal the individual fiber orientations for up to three crossing nerve fiber bundles, with crossing angles down to 25°.
000878136 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000878136 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000878136 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x2
000878136 588__ $$aDataset connected to CrossRef
000878136 7001_ $$0P:(DE-HGF)0$$aPereira, Silvania F.$$b1
000878136 770__ $$aBiophotonics (2020)
000878136 773__ $$0PERI:(DE-600)2572216-5$$a10.1364/BOE.397604$$gVol. 11, no. 8, p. 4735 -$$n8$$p4735 - 4758$$tBiomedical optics express$$v11$$x2156-7085$$y2020
000878136 8564_ $$uhttps://juser.fz-juelich.de/record/878136/files/Menzel-Pereira2020.pdf$$yOpenAccess
000878136 8564_ $$uhttps://juser.fz-juelich.de/record/878136/files/Menzel-Pereira2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878136 909CO $$ooai:juser.fz-juelich.de:878136$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000878136 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161196$$aForschungszentrum Jülich$$b0$$kFZJ
000878136 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000878136 9141_ $$y2020
000878136 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-21
000878136 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-21
000878136 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2019-12-21
000878136 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878136 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMED OPT EXPRESS : 2018$$d2019-12-21
000878136 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-21
000878136 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-21
000878136 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-21
000878136 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2019-12-21
000878136 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-21
000878136 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2019-12-21
000878136 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878136 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2019-12-21
000878136 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2019-12-21
000878136 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2019-12-21
000878136 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-21
000878136 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2019-12-21
000878136 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-21
000878136 920__ $$lyes
000878136 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000878136 980__ $$ajournal
000878136 980__ $$aVDB
000878136 980__ $$aUNRESTRICTED
000878136 980__ $$aI:(DE-Juel1)INM-1-20090406
000878136 9801_ $$aFullTexts