TY - JOUR
AU - Menzel, Miriam
AU - Pereira, Silvania F.
TI - Coherent Fourier scatterometry reveals nerve fiber crossings in the brain
JO - Biomedical optics express
VL - 11
IS - 8
SN - 2156-7085
CY - Washington, DC
PB - OSA
M1 - FZJ-2020-02654
SP - 4735 - 4758
PY - 2020
AB - Previous simulation studies by Menzel et al. [Phys. Rev. X 10, 021002 (2020)] have shown that scattering patterns of light transmitted through artificial nerve fiber constellations contain valuable information about the tissue substructure such as the individual fiber orientations in regions with crossing nerve fibers. Here, we present a method that measures these scattering patterns in monkey and human brain tissue using coherent Fourier scatterometry with normally incident light. By transmitting a non-focused laser beam (λ = 633 nm) through unstained histological brain sections, we measure the scattering patterns for small tissue regions (with diameters of 0.1–1 mm), and show that they are in accordance with the simulated scattering patterns. We reveal the individual fiber orientations for up to three crossing nerve fiber bundles, with crossing angles down to 25°.
LB - PUB:(DE-HGF)16
C6 - pmid:32923075
UR - <Go to ISI:>//WOS:000577451600048
DO - DOI:10.1364/BOE.397604
UR - https://juser.fz-juelich.de/record/878136
ER -