000878138 001__ 878138 000878138 005__ 20230111074325.0 000878138 0247_ $$2doi$$a10.3390/ijms21155558 000878138 0247_ $$2Handle$$a2128/27327 000878138 0247_ $$2pmid$$a32756507 000878138 0247_ $$2WOS$$aWOS:000559578200001 000878138 037__ $$aFZJ-2020-02655 000878138 082__ $$a540 000878138 1001_ $$0P:(DE-Juel1)131704$$aRollenhagen, Astrid$$b0$$ufzj 000878138 245__ $$aSynaptic Organization of the Human Temporal Lobe Neocortex as Revealed by High-Resolution Transmission, Focused Ion Beam Scanning, and Electron Microscopic Tomography 000878138 260__ $$aBasel$$bMDPI$$c2020 000878138 3367_ $$2DRIVER$$aarticle 000878138 3367_ $$2DataCite$$aOutput Types/Journal article 000878138 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615280431_9838 000878138 3367_ $$2BibTeX$$aARTICLE 000878138 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000878138 3367_ $$00$$2EndNote$$aJournal Article 000878138 520__ $$aModern electron microscopy (EM) such as fine-scale transmission EM, focused ion beam scanning EM, and EM tomography have enormously improved our knowledge about the synaptic organization of the normal, developmental, and pathologically altered brain. In contrast to various animal species, comparably little is known about these structures in the human brain. Non-epileptic neocortical access tissue from epilepsy surgery was used to generate quantitative 3D models of synapses. Beside the overall geometry, the number, size, and shape of active zones and of the three functionally defined pools of synaptic vesicles representing morphological correlates for synaptic transmission and plasticity were quantified. EM tomography further allowed new insights in the morphological organization and size of the functionally defined readily releasable pool. Beside similarities, human synaptic boutons, although comparably small (approximately 5 µm), differed substantially in several structural parameters, such as the shape and size of active zones, which were on average 2 to 3-fold larger than in experimental animals. The total pool of synaptic vesicles exceeded that in experimental animals by approximately 2 to 3-fold, in particular the readily releasable and recycling pool by approximately 2 to 5-fold, although these pools seemed to be layer-specifically organized. Taken together, synaptic boutons in the human temporal lobe neocortex represent unique entities perfectly adapted to the “job” they have to fulfill in the circuitry in which they are embedded. Furthermore, the quantitative 3D models of synaptic boutons are useful to explain and even predict the functional properties of synaptic connections in the human neocortex. 000878138 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0 000878138 588__ $$aDataset connected to CrossRef 000878138 7001_ $$0P:(DE-HGF)0$$aWalkenfort, Bernd$$b1 000878138 7001_ $$0P:(DE-Juel1)166302$$aYakoubi, Rachida$$b2$$ufzj 000878138 7001_ $$0P:(DE-HGF)0$$aKlauke, Sarah A.$$b3 000878138 7001_ $$0P:(DE-Juel1)179113$$aSchmuhl-Giesen, Sandra F.$$b4 000878138 7001_ $$0P:(DE-HGF)0$$aHeinen-Weiler, Jacqueline$$b5 000878138 7001_ $$0P:(DE-HGF)0$$aVoortmann, Sylvia$$b6 000878138 7001_ $$0P:(DE-Juel1)131698$$aMarshallsay, Brigitte$$b7$$ufzj 000878138 7001_ $$0P:(DE-Juel1)167519$$aPalaz, Tayfun$$b8$$ufzj 000878138 7001_ $$0P:(DE-Juel1)129279$$aHolz, Ulrike$$b9$$ufzj 000878138 7001_ $$00000-0001-7466-1846$$aHasenberg, Mike$$b10$$eCorresponding author 000878138 7001_ $$0P:(DE-Juel1)131696$$aLübke, Joachim H. R.$$b11$$eCorresponding author 000878138 773__ $$0PERI:(DE-600)2019364-6$$a10.3390/ijms21155558$$gVol. 21, no. 15, p. 5558 -$$n15$$p5558 -$$tInternational journal of molecular sciences$$v21$$x1422-0067$$y2020 000878138 8564_ $$uhttps://juser.fz-juelich.de/record/878138/files/Invoice_MDPI_ijms-871252_1584.34EUR.pdf 000878138 8564_ $$uhttps://juser.fz-juelich.de/record/878138/files/Invoice_MDPI_ijms-871252_1584.34EUR.pdf?subformat=pdfa$$xpdfa 000878138 8564_ $$uhttps://juser.fz-juelich.de/record/878138/files/ijms-21-05558.pdf$$yOpenAccess 000878138 8564_ $$uhttps://juser.fz-juelich.de/record/878138/files/ijms-21-05558.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000878138 8767_ $$8ijms-871252$$92020-07-29$$d2020-08-03$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200155212 000878138 909CO $$ooai:juser.fz-juelich.de:878138$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000878138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131704$$aForschungszentrum Jülich$$b0$$kFZJ 000878138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166302$$aForschungszentrum Jülich$$b2$$kFZJ 000878138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179113$$aForschungszentrum Jülich$$b4$$kFZJ 000878138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131698$$aForschungszentrum Jülich$$b7$$kFZJ 000878138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167519$$aForschungszentrum Jülich$$b8$$kFZJ 000878138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129279$$aForschungszentrum Jülich$$b9$$kFZJ 000878138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131696$$aForschungszentrum Jülich$$b11$$kFZJ 000878138 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000878138 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000878138 9141_ $$y2021 000878138 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-02 000878138 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000878138 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOL SCI : 2018$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000878138 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-02 000878138 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-02 000878138 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-02 000878138 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x0 000878138 980__ $$ajournal 000878138 980__ $$aVDB 000878138 980__ $$aUNRESTRICTED 000878138 980__ $$aI:(DE-Juel1)INM-10-20170113 000878138 980__ $$aAPC 000878138 9801_ $$aAPC 000878138 9801_ $$aFullTexts