000878145 001__ 878145
000878145 005__ 20220930130246.0
000878145 0247_ $$2doi$$a10.1186/s40658-020-00319-6
000878145 0247_ $$2Handle$$a2128/25402
000878145 0247_ $$2pmid$$apmid:32728773
000878145 0247_ $$2WOS$$aWOS:000554694600001
000878145 037__ $$aFZJ-2020-02658
000878145 082__ $$a610
000878145 1001_ $$0P:(DE-Juel1)164356$$aChoi, Chang-Hoon$$b0$$ufzj
000878145 245__ $$aAn in vivo multimodal feasibility study in a rat brain tumour model using flexible multinuclear MR and PET systems
000878145 260__ $$aHeidelberg$$bSpringer Open$$c2020
000878145 3367_ $$2DRIVER$$aarticle
000878145 3367_ $$2DataCite$$aOutput Types/Journal article
000878145 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596100084_16422
000878145 3367_ $$2BibTeX$$aARTICLE
000878145 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878145 3367_ $$00$$2EndNote$$aJournal Article
000878145 520__ $$aBackgroundIn addition to the structural information afforded by 1H MRI, the use of X-nuclei, such as sodium-23 (23Na) or phosphorus-31 (31P), offers important complementary information concerning physiological and biochemical parameters. By then combining this technique with PET, which provides valuable insight into a wide range of metabolic and molecular processes by using of a variety of radioactive tracers, the scope of medical imaging and diagnostics can be significantly increased. While the use of multimodal imaging is undoubtedly advantageous, identifying the optimal combination of these parameters to diagnose a specific dysfunction is very important and is advanced by the use of sophisticated imaging techniques in specific animal models.MethodsIn this pilot study, rats with intracerebral 9L gliosarcomas were used to explore a combination of sequential multinuclear MRI using a sophisticated switchable coil set in a small animal 9.4 T MRI scanner and, subsequently, a small animal PET with the tumour tracer O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET). This made it possible for in vivo multinuclear MR-PET experiments to be conducted without compromising the performance of either multinuclear MR or PET.ResultsHigh-quality in vivo images and spectra including high-resolution 1H imaging, 23Na-weighted imaging, detection of 31P metabolites and [18F]FET uptake were obtained, allowing the characterisation of tumour tissues in comparison to a healthy brain. It has been reported in the literature that these parameters are useful in the identification of the genetic profile of gliomas, particularly concerning the mutation of the isocitrate hydrogenase gene, which is highly relevant for treatment strategy.ConclusionsThe combination of multinuclear MR and PET in, for example, brain tumour models with specific genetic mutations will enable the physiological background of signal alterations to be explored and the identification of the optimal combination of imaging parameters for the non-invasive characterisation of the molecular profile of tumours.
000878145 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000878145 588__ $$aDataset connected to CrossRef
000878145 7001_ $$0P:(DE-Juel1)156479$$aStegmayr, Carina$$b1$$ufzj
000878145 7001_ $$0P:(DE-Juel1)162286$$aShymanskaya, Aliaksandra$$b2
000878145 7001_ $$0P:(DE-Juel1)156200$$aWorthoff, Wieland A.$$b3$$ufzj
000878145 7001_ $$0P:(DE-Juel1)157838$$ada Silva, Nuno A.$$b4
000878145 7001_ $$0P:(DE-Juel1)131761$$aFelder, Jörg$$b5$$ufzj
000878145 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b6$$ufzj
000878145 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b7$$eCorresponding author$$ufzj
000878145 773__ $$0PERI:(DE-600)2768912-8$$a10.1186/s40658-020-00319-6$$gVol. 7, no. 1, p. 50$$n1$$p50$$tEJNMMI Physics$$v7$$x2197-7364$$y2020
000878145 8564_ $$uhttps://juser.fz-juelich.de/record/878145/files/2020_Choi_EJNMMI_Physics.pdf$$yOpenAccess
000878145 8564_ $$uhttps://juser.fz-juelich.de/record/878145/files/2020_Choi_EJNMMI_Physics.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878145 8767_ $$d2020-07-13$$eHybrid-OA$$jDEAL$$lDEAL: Springer$$pEJPH-D-20-00038$$zapproved im dashboard
000878145 909CO $$ooai:juser.fz-juelich.de:878145$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000878145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164356$$aForschungszentrum Jülich$$b0$$kFZJ
000878145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156479$$aForschungszentrum Jülich$$b1$$kFZJ
000878145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156200$$aForschungszentrum Jülich$$b3$$kFZJ
000878145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131761$$aForschungszentrum Jülich$$b5$$kFZJ
000878145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b6$$kFZJ
000878145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b7$$kFZJ
000878145 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000878145 9141_ $$y2020
000878145 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-21
000878145 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-21
000878145 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-21
000878145 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878145 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEJNMMI PHYS : 2018$$d2019-12-21
000878145 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-21
000878145 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-21
000878145 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2019-12-21
000878145 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2019-12-21
000878145 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-21
000878145 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2019-12-21
000878145 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878145 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2019-12-21
000878145 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2019-12-21
000878145 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-21
000878145 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2019-12-21
000878145 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-21
000878145 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000878145 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000878145 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000878145 9801_ $$aFullTexts
000878145 980__ $$ajournal
000878145 980__ $$aVDB
000878145 980__ $$aUNRESTRICTED
000878145 980__ $$aI:(DE-Juel1)INM-4-20090406
000878145 980__ $$aI:(DE-Juel1)INM-11-20170113
000878145 980__ $$aI:(DE-Juel1)VDB1046
000878145 980__ $$aAPC