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Generation of electron vortices using nonexact electric fields
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Vortices in electron beams can manifest several types of topological phenomena, such as the formation of

exotic structures or interactions with topologically structured electromagnetic fields. For instance, the wave

function of an electron beam can acquire a phase vortex upon propagating through a magnetic monopole. In

practice, this provides a convenient method for generating electron vortex beams, yet it is very limited by the

structural integrity of devices used for such purposes. Here, we show how an electric field must be structured

in order to achieve a similar effect. We find that closed but not exact electric fields can produce electron

vortex beams. We proceed by fabricating a versatile, robust, and near-obstruction-free device that is designed

to approximately produce such fields and we systematically study their influence on incoming electron beams.

With such a single device, electron vortex beams that are defined by a wide range of topological charges can

be produced by means of a slight variation of an applied voltage. For this reason, this device is expected to be

important in applications that rely on the sequential generation and manipulation of different types of electron

vortices.
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Vortices can generally be described as stagnant points

surrounded by a form of coiling motion. These entities can,

for instance, occur within complex fields, such as those de-

scribing the wave function of a quantum system or scalar

optical waves. In such systems, vortices manifest themselves

as singular points of the wave field’s phase, i.e., points around

which the phase varies by an integer multiple ℓ of 2π , where ℓ

is referred to as the topological charge of the singularity [1–3].

In many cases, the presence of singularities in wave fields can

lead to exotic forms of topological or geometric phenomena.

For instance, the presence of a polarization singularity in

a tightly focused optical wave can lead to the formation

of a Möbius strip [4], while optical beams with carefully

structured phase and polarization singularity distributions can

result in the formation of knots [5,6]. Other types of singular

behavior can occur when matter waves of charged particles

interact with structured electromagnetic fields. For instance,

an electron beam propagating through a magnetic monopole
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is known to acquire a vortex with a topological charge that

is proportional to the strength of the monopole [7,8]. The

impartment of this vortex arises directly from the electron’s

charge, in conjunction with the topological structure of the

magnetic field. In practice, the latter is often approximated

by the tip of a magnetic needle [9,10]. When this vortex is

located at the center of the beam, the electron effectively

acquires h̄ℓ units of orbital angular momentum (OAM), where

h̄ is the reduced Planck constant [11]. In conjunction with the

electron’s charge, the presence of a vortex also causes the

electron to acquire a magnetic dipole moment ℓµB, where

µB is the Bohr magneton. This magnetic property makes

OAM-carrying electrons desirable in materials science, as it

allows them to be employed as nanoscale magnetic probes

[12–14]. For this reason, magnetic needles offer an appealing

alternative to other types of electron beam-shaping methods,

such as diffractive holograms [12,15,16] and refractive phase

masks [17,18], which are both able to generate electron vortex

beams. However, these devices have some technological con-

straints, including limited spatial resolution and an inability

to generate electron vortices that are defined by arbitrary

topological charges with a single device. For the specific case

of magnetic needles, their magnetic nature prevents them from

being positioned in the back focal plane of a magnetic lens and

therefore to be used in electron imaging techniques that are

analogous to optical spiral phase contrast microscopy [19,20].

Finally, the physical endurance of needles currently prevents
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them from generating electrons that are defined by larger

values of OAM that are desirable in applications that rely on

the stronger magnetic dipole moment that is carried by these

electrons [14,21]. In this article, we discuss how an electric

field can be shaped to impart a phase vortex on an electron

beam. The requirement to achieve such an effect relies deeply

on the nature of the topology of electric fields. We present

an implementation of a device based on a recently proposed

design [22] that can be seen as an electric counterpart to a

magnetic needle and demonstrate how its electrical properties,

in conjunction with its structural durability, can be used to

generate electrons that carry a much broader range of tunable

OAM values than those generated using magnetic needles.

In order to acquire OAM, electron waves need to acquire

an azimuthally dependent phase that results in the addition of

an exp (iℓϕ) term to their mathematical formulation, where

ϕ is the transverse azimuthal coordinate. Such phases can be

acquired by making the electron propagate through a potential

whose action induces a structured phase shift [15–18,23].

The phase θ acquired by an electron wave upon propagation

through a system that is characterized by the presence of an

electromagnetic field can be expressed in the form [11]

θ =
1

h̄

∫

(p · dr − E dt )

︸ ︷︷ ︸

Dynamic Phase

+
e

h̄

∫

A · dr

︸ ︷︷ ︸

Dirac Phase

+

∫

A · dR

︸ ︷︷ ︸

Berry Phase

. (1)

The first term in this equation accounts for the dynamical

phase acquired by the electron, where p is the electron’s

kinetic momentum, E = p2/2m + e� − µ · B is its energy, m

is its mass, e is its charge, � is the field’s scalar potential, µ is

the electron’s magnetic dipole moment, and B is the magnetic

field. This phase is typically used in the holographic gener-

ation of OAM-carrying electrons, given that such methods

rely on devices which have a mean inner potential that affects

both the energy and the momentum of propagating electrons

[12,15–18]. The second term is the Dirac phase, where A is

the field’s vector potential. It is responsible for the impart-

ment of OAM onto electrons propagating through a magnetic

monopole [8] and other phenomena such as the Aharonov-

Bohm effect [24]. The last term represents the Berry phase,

where A is the Berry curvature associated with an adiabat-

ically varied parameter R. Though this phase is known to

be affected by electromagnetic fields [11], we reserve the

treatment of its contribution to our device’s performance for

future work.

The OAM acquired by an electron beam exposed to a mag-

netic monopole is known to arise from the relative Dirac phase

attributed to propagation along different transverse azimuthal

angles. As depicted schematically in Fig. 1(a), this phase is

proportional to the magnetic flux going through a surface

bounded by the path taken by an electron and a reference path

at ϕ = 0 [3,9], which is proportional to the ϕ coordinate. A

more realistic treatment of this calculation involves the use

of the field of a magnetic needle, which, as opposed to ideal

monopoles, are readily realized in practice [9]. Geometrically

speaking, this condition is enabled by the presence of a “2-

hole” at the origin of our coordinate system. More specifically,

our magnetic field, which consists of a differential 2-form,

is undefined at the origin and is thereby only formulated in

FIG. 1. Propagation of electrons through closed but not exact

electromagnetic fields. (a) Surfaces used to calculate the relative

azimuthal phase gained by electrons upon propagating through a

magnetic monopole as investigated in Ref. [9]. (b) Lines used to

calculate the relative azimuthal phase gained by electrons upon

propagating through an azimuthally oriented electric field. Both the

surfaces and the lines are colored based on the phase obtained

from integrating the fields over them. The green arrows in the plots

represent the two trajectories that are used as boundaries to calculate

their relative azimuthal phases. In these plots, field strengths that

were designed to add a phase of θ = ϕ to the electron beam were

considered.

the manifold R
3 − {0}. This construction prevents an arbitrary

two-dimensional surface in the manifold to be deformed into

another without crossing the hole, causing the magnetic field

to be closed but not exact. This non-simply-connected space

endowed with a “2-hole” gives rise to the radial nature of

the magnetic field and therefore enables the impartment of a

vortex on a propagating electron beam.

To obtain an electric field that can produce an electron

vortex, one must first consider how electric fields differ from

magnetic fields in terms of their influence on the phase of an

electron wave, as indicated in Eq. (1). This process can con-

ceptually be related to the electric field’s topology. Namely,

unlike magnetic fields, the differential forms that describe

electric fields are 1-forms. For this reason, a closed yet not

exact electric field can be constructed from the presence of a

“1-hole.” One can therefore expect that 1-holes can be used to

impart a phase vortex onto an electron wave by arranging them

in two-dimensional planes perpendicular to the wave’s propa-

gation. As displayed in Fig. 1(b), the phase resulting from the

interaction between the electrons and the electric field should

depend on lines enclosing the holes, i.e., a 1 + 1-dimensional

boundary, as opposed to the surfaces used in the case of the 2-

forms, which consists of a 2 + 1-dimensional boundary. This

intuitive approach can be concretized by directly calculating

the contribution of the electric field to the phase acquired by

an electron from Eq. (1), i.e., −(e/h̄)
∫

� dt [25]. Assuming

the presence of a static electric field along with a paraxial

configuration over which the electrons are propagating along

the z axis, the integration over time can be replaced by an

integration along z. As a result, the acquired phase becomes

−(em/h̄p0)
∫

� dz, implying that the potential � needs to

be monotonic along ϕ over a certain range �z to impart

OAM to electrons. Such a requirement can also be seen by

expressing the azimuthal domain of this potential with respect
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FIG. 2. Device generating a tunable, closed, but not exact electric

field. Two submicron wires in close proximity with different electric

potentials can effectively produce an azimuthally oriented electric

field at their extremity. (a) Electric field resulting from such a

configuration at the tips of both wires, which, represented as red and

blue segments, are infinitely long and infinitely close to one another.

(b) Device configuration required for the impartment of OAM onto

an electron beam by means of such an electric field. The electric

field is represented by red arrows, with a relative opacity that is

dictated by its relative strength. (c) Scanning electron micrograph

of a fabricated device, which consists of two 200-nm-wide and

15-µm-long nanowires separated by a 200-nm gap, which lie on a

silicon-nitride/silicon substrate.

to the azimuthal component of the electric field Eϕ , i.e.,

�(ϕ, z) = −
∫

Eϕ (ϕ, z) ρdϕ. In order to impart a phase that

increases linearly with azimuthal angle, an electric field with

a constant azimuthal component is required. This requirement

is shown schematically in Fig. 1(b). As initially postulated,

the azimuthal nature of the electric field makes it not exact

and constrains it to the manifold R
2 − {0} for a given z value,

requiring the presence of a “1-hole” at the origin. Moreover,

the presence of the azimuthally varying phase ultimately relies

on a line integral as opposed to a surface integral. In order

to produce such an azimuthal electric field, one can adopt a

dipole-like structure that locally displays fields with the geom-

etry required to impart OAM onto electrons [22]. These local

features can thereafter be enhanced by modifying the local

geometry of the structure itself. As illustrated in Fig. 2(a), the

tip of two elongated and extremely close charged rods allows

for the generation of an almost perfectly azimuthal electric

field. As in the case of magnetic needles [9,10], although the

field of this structure is not strictly closed but nonexact, it

still locally displays the features that are required to impart

a vortex on the electron beam as shown in the experimental

results of this work. By varying the charges on the two rods,

the relative strength of the azimuthal electric field can be

modified. Schematic diagrams of how such a device can be

used to impart OAM onto incoming electrons are shown in

Fig. 2(b). By varying the relative potential between the two

rods, or equivalently the effective charge that they carry, the

strength of the azimuthal electric field can be adjusted, thereby

enabling the generation of electron vortices that are defined by

a tunable amount of OAM. Because the strength of the electric

field varies continuously as a function of relative potential,

only discrete values of voltage applied between the two rods

can lead to quantized azimuthal phase variations attributed to

OAM.

This analysis may be confirmed analytically by considering

the electric potential of a uniformly charged rod of length

a and charge density K whose tip is centered at the origin

[26]:

�(x, y, z) =
K

4πε0

[

log

(√

(a + y)2 + x2 + z2 + a + y
√

x2 + y2 + z2 + y

)

−
a

√

(x + xD)2 + (y + yD)2 + z2

]

, (2)

where the second term accounts for an arbitrarily positioned

test charge in the z = 0 plane. Knowing that the dynamic

phase acquired by an electron propagating along the z axis

due to an electric field is given by −(em/h̄p0)
∫

� dz, then it

follows from direct integration that this phase is given by

θ (x, y) = −
mKe

4πε0 h̄p0

[

−(a + y) log((a + y)2 + x2)

+ y log(y2 + x2) + 2a

+ 2x arctan
(y

x

)

− 2x arctan

(
a + y

x

)

+ a log((x + xD)2 + (y + yD)2)

]

(3)

Because the electric potential is additive, then one can ob-

tain the phase attributed to our vortex generator by adding

two phases attributed to oppositely charged shifted rods,

i.e., θ (x − α, y) − θ (x + α, y), where 2α is the separation

between the two rods [22]. As demonstrated later, this phase

locally displays the ℓϕ variations attributed to the presence of

a vortex. If the length of this interaction is much smaller than

the electron beam’s diffraction length [3], then the electron

wave function only acquires a phase shift. The wave function

upon further propagation can then be calculated by solving the

following Fresnel integral

ψ (x, y, z) ∝
p0

hz

∫∫

ψ (x′, y′, 0)K(x, y, x′, y′)dx′ dy′, (4)

where ψ (x′, y′, 0) is the wave function of the electron that

is incident on the device and K(x, y, x′, y′) is a propagation

Kernel given by

K(x, y, x′, y′) = ei( p0
2h̄z

[(x−x′ )2+(y−y′ )2]+θ (x′−α,y′ )−θ (x′+α,y′ )). (5)

If needed, a more detailed treatment of a beam propagating

under the conditions imposed by an electron microscope can

be achieved with more involved numerical methods [27].

In order to fabricate such a device, we adopted a fabri-

cation procedure that involved the combined use of electron

beam lithography and focused ion beam (FIB) milling. This

approach enabled the fabrication of two 200-nm-wide and

15-µm-long metallic wires separated by a 200-nm gap, which

were patterned lithographically onto a silicon nitride/silicon
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substrate. A semicircular opening with a radius of 15 µm

around the wires was then created using FIB milling. This

design enables the substrate to be grounded to the microscope,

while the wires are connected to an external voltage source,

thereby preventing the formation of a short circuit between the

wires. Given that the wires only span a bridge of 600 nm over

the 30-µm circular opening, the device is almost obstruction-

free, allowing higher transmission efficiency and reducing

potential artefacts from scattering introduced by material-

based phase masks. A scanning electron micrograph of the

device is shown in Fig. 2(c). Unlike previous electron vortex

generators relying on electric fields [28], this device is tun-

able, provides the ability to generate a wide range of electron

vortices, and, based on previous discussions, produces a field

known to display the topological features required to do so.

Furthermore, given that our device as a whole carries a net

charge of zero, our electron wave does not acquire a lateral

phase gradient from it, thereby making it more stable upon

propagation.

The device’s ability to impart a vortex on an electron

was demonstrated by measuring it inside a transmission elec-

tron microscope (TEM, FEI Titan 60-300) equipped with

a Schottky-type high-brightness field emission gun (FEI X-

FEG) and two electron biprisms. The microscope was oper-

ated at 300 kV during the measurements. An electron biprism

was used to form an interference region with a 1.5-µm-

wide field of view. A 1.9-nm holographic interference fringe

spacing was obtained by using a biprism voltage at 107 V.

Off-axis electron holography measurements obtained in this

configuration were used to reconstruct the phase profile of

electrons that had interacted with the device. Representative

theoretical and experimental phase profiles are shown in

Figs. 3(c) and 3(d) respectively and clearly display azimuthal

variations attributed to the presence of a phase vortex.

As expected, the strength of these variations increases with

that of the device’s azimuthal electric field, which is tuned

by means of applying a voltage difference between the two

wires. In particular, voltages of ±5 and ±10 V enable the

generation of electron vortices that are defined by topological

charges of ℓ ≈ ±15 and ℓ ≈ ±30, respectively. The presence

of the vortices is also attested by the profile of the probability

density function of the electrons’ wave function. Defocused

images recorded in the Fresnel domain provide a means of

examining the latter quantity, given that they are acquired over

many electrons and that the use of a larger defocus amplifies

the small deflection of the electrons, thereby yielding a good

reflection of the probabilistic nature of their wave function.

The obtained theoretical and experimental images are shown

in Figs. 3(e) and 3(f) respectively, for a series of different

potentials applied to the two wires, as well as in Fig. 3(b),

where no potential was applied. They display the expected

presence of a null in the electron’s probability density function

located at the position of the phase vortex. The transverse

extent of these nulls also displays the quintessential trend of

increasing with the absolute value of the beam’s topological

charge. The phase and probability density profiles of the

electron vortices are in good agreement with the expected

phase profile given in Eq. (3) and numerical results based

on Eq. (4). Slight discrepancies between the simulations and

experiments arise primarily from minor details regarding how

FIG. 3. Transverse spatial profile of electrons affected by the

device. (a) TEM image of the device providing the phase, arg ψ ,

of the electron beam when no voltage is applied to the device.

(b) Corresponding TEM image of the propagated electron beam

obtained from Fresnel imaging with a nominal defocus near 25 mm.

This image provides a measure of the probability density |ψ |2

of the electron beam’s wave function. Phase of an electron wave

function having interacted with the device while the two wires

were held at various potentials obtained from both (c) theory and

(d) experiment. These phase profiles were reconstructed by means of

off-axis electron holography defined by a fringe spacing of 1.9 nm.

Both the absolute value and the sign of the generated electron

vortex beam’s topological charge are observed to follow that of

the applied voltage. Corresponding probability density functions

of the electrons obtained from TEM images by means of Fres-

nel imaging experiments (e) based on theory and (f) obtained in

experiments.

the device is fabricated. As the silicon nitride/silicon support

of the wires becomes charged when it is being used, the

presence of the support introduces additional contributions

to the potential, akin to that of a biprism [22]. The finite

length of the wires also contributes to discrepancies in the

potential. These limitations can, however, be addressed with

slight design modifications, such as the addition of static

fields, as well as by ensuring that the wires can be biased

independently.

In summary, we have demonstrated the tunable generation

of electron vortex beams by means of closed but not exact

electric fields. On a fundamental level, the structure of the

field used in this generation scheme can be conceptually deter-

mined from the differential form describing electric fields and

the need for 1-holes to generate the electron vortex. We were

able to construct such fields by means of a nanofabricated

device consisting of two wires held at different potentials. By

adjusting the potential difference between the wires, we were

able to adjust both the strength and the sign of the device’s

electric field, thereby enabling the generation of electron

vortex beams defined by arbitrary topological charges. Be-

sides demonstrating the relationship between the differential

geometry of an electric field and the vortex content of an

electron affected by it, our device holds significant promise for

applications that rely on the sequential generation of electron

vortex beams defined by different topological charges. Poten-

tial extensions of this device could include the use of larger

numbers of electrodes to generate more complicated electron

beam shapes—perhaps three-dimensional ones, especially if
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the electric fields can be modulated on a timescale over which

the electron wave passes the device.
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