000878150 001__ 878150
000878150 005__ 20230426083220.0
000878150 0247_ $$2doi$$a10.1103/PhysRevB.100.224409
000878150 0247_ $$2ISSN$$a0163-1829
000878150 0247_ $$2ISSN$$a0556-2805
000878150 0247_ $$2ISSN$$a1050-2947
000878150 0247_ $$2ISSN$$a1094-1622
000878150 0247_ $$2ISSN$$a1095-3795
000878150 0247_ $$2ISSN$$a1098-0121
000878150 0247_ $$2ISSN$$a1538-4446
000878150 0247_ $$2ISSN$$a1538-4489
000878150 0247_ $$2ISSN$$a1550-235X
000878150 0247_ $$2ISSN$$a2469-9950
000878150 0247_ $$2ISSN$$a2469-9969
000878150 0247_ $$2ISSN$$a2469-9977
000878150 0247_ $$2Handle$$a2128/25429
000878150 0247_ $$2altmetric$$aaltmetric:72453139
000878150 0247_ $$2WOS$$aWOS:000501542400004
000878150 037__ $$aFZJ-2020-02663
000878150 041__ $$aEnglish
000878150 082__ $$a530
000878150 1001_ $$0P:(DE-HGF)0$$aRotunno, Enzo$$b0$$eCorresponding author
000878150 245__ $$aOrbital angular momentum resolved electron magnetic chiral dichroism
000878150 260__ $$aWoodbury, NY$$bInst.$$c2019
000878150 3367_ $$2DRIVER$$aarticle
000878150 3367_ $$2DataCite$$aOutput Types/Journal article
000878150 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596522697_9645
000878150 3367_ $$2BibTeX$$aARTICLE
000878150 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878150 3367_ $$00$$2EndNote$$aJournal Article
000878150 520__ $$aWe propose to use the recently introduced orbital angular momentum spectrometer in a transmission electron microscope to perform electron magnetic chiral dichroism experiments, dispersing the inelastically scattered electrons from a magnetic material in both energy and angular momentum. The technique offers several advantages over previous formulations of electron magnetic chiral dichroism as it requires much simpler experimental conditions in terms of specimen orientation and thickness. A simulation algorithm, based on the multislice description of the beam propagation, is used to anticipate the advantages of the approach over current electron magnetic chiral dichroism implementations. Numerical calculations confirm an increased magnetic signal to noise ratio with in plane atomic resolution.
000878150 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878150 536__ $$0G:(EU-Grant)766970$$aQ-SORT - QUANTUM SORTER (766970)$$c766970$$fH2020-FETOPEN-1-2016-2017$$x1
000878150 542__ $$2Crossref$$i2019-12-09$$uhttps://link.aps.org/licenses/aps-default-license
000878150 588__ $$aDataset connected to CrossRef
000878150 7001_ $$0P:(DE-HGF)0$$aZanfrognini, Matteo$$b1
000878150 7001_ $$0P:(DE-HGF)0$$aFrabboni, Stefano$$b2
000878150 7001_ $$0P:(DE-HGF)0$$aRusz, Jan$$b3
000878150 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b4$$ufzj
000878150 7001_ $$0P:(DE-HGF)0$$aKarimi, Ebrahim$$b5
000878150 7001_ $$0P:(DE-HGF)0$$aGrillo, Vincenzo$$b6
000878150 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.100.224409$$bAmerican Physical Society (APS)$$d2019-12-09$$n22$$p224409$$tPhysical Review B$$v100$$x2469-9950$$y2019
000878150 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.100.224409$$gVol. 100, no. 22, p. 224409$$n22$$p224409$$tPhysical review / B$$v100$$x2469-9950$$y2019
000878150 8564_ $$uhttps://juser.fz-juelich.de/record/878150/files/PhysRevB.100.224409.pdf$$yOpenAccess
000878150 8564_ $$uhttps://juser.fz-juelich.de/record/878150/files/PhysRevB.100.224409.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878150 909CO $$ooai:juser.fz-juelich.de:878150$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000878150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
000878150 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878150 9141_ $$y2020
000878150 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-24
000878150 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24
000878150 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-24
000878150 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-24
000878150 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000878150 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-01-24
000878150 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-24
000878150 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-24
000878150 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-24
000878150 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-24
000878150 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878150 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-24
000878150 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-24
000878150 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-24
000878150 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-24
000878150 920__ $$lyes
000878150 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878150 980__ $$ajournal
000878150 980__ $$aVDB
000878150 980__ $$aUNRESTRICTED
000878150 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878150 9801_ $$aFullTexts
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature04778
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2019.03.008
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41563-017-0010-4
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.134422
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.214425
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2007.07.002
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature09366
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature08904
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1198804
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-017-01077-9
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2016.05.006
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.91.032703
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.105504
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.145501
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.144430
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.134428
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1186/s40679-016-0019-9
000878150 999C5 $$1E. J. Kirkland$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4419-6533-2$$y2010
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0108767312013189
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2014.11.001
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S1431927616009387
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2017.03.019
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms15536
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/aa5f6f
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.153601
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsphotonics.9b00131
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmmm.2012.03.050
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms12672
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2018.10.012
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.245121
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2005.03.005
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2009.01.003
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0065-2539(08)60878-1
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.064444
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2013.03.021
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2017.01.008
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.060408
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.060409
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.40.2024
000878150 999C5 $$1E. J. Kirkland$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4419-6533-2$$y2010
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2012.10.016
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevApplied.11.044072
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-018-22234-8
000878150 999C5 $$1P. Blaha$$2Crossref$$oP. Blaha WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties 2018$$tWIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties$$y2018
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000878150 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms3781