Hauptseite > Publikationsdatenbank > Orbital angular momentum resolved electron magnetic chiral dichroism > print |
001 | 878150 | ||
005 | 20230426083220.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.100.224409 |2 doi |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1050-2947 |2 ISSN |
024 | 7 | _ | |a 1094-1622 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1538-4446 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2469-9977 |2 ISSN |
024 | 7 | _ | |a 2128/25429 |2 Handle |
024 | 7 | _ | |a altmetric:72453139 |2 altmetric |
024 | 7 | _ | |a WOS:000501542400004 |2 WOS |
037 | _ | _ | |a FZJ-2020-02663 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Rotunno, Enzo |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Orbital angular momentum resolved electron magnetic chiral dichroism |
260 | _ | _ | |a Woodbury, NY |c 2019 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1596522697_9645 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We propose to use the recently introduced orbital angular momentum spectrometer in a transmission electron microscope to perform electron magnetic chiral dichroism experiments, dispersing the inelastically scattered electrons from a magnetic material in both energy and angular momentum. The technique offers several advantages over previous formulations of electron magnetic chiral dichroism as it requires much simpler experimental conditions in terms of specimen orientation and thickness. A simulation algorithm, based on the multislice description of the beam propagation, is used to anticipate the advantages of the approach over current electron magnetic chiral dichroism implementations. Numerical calculations confirm an increased magnetic signal to noise ratio with in plane atomic resolution. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
536 | _ | _ | |a Q-SORT - QUANTUM SORTER (766970) |0 G:(EU-Grant)766970 |c 766970 |f H2020-FETOPEN-1-2016-2017 |x 1 |
542 | _ | _ | |i 2019-12-09 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Zanfrognini, Matteo |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Frabboni, Stefano |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Rusz, Jan |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Dunin-Borkowski, Rafal |0 P:(DE-Juel1)144121 |b 4 |u fzj |
700 | 1 | _ | |a Karimi, Ebrahim |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Grillo, Vincenzo |0 P:(DE-HGF)0 |b 6 |
773 | 1 | 8 | |a 10.1103/physrevb.100.224409 |b American Physical Society (APS) |d 2019-12-09 |n 22 |p 224409 |3 journal-article |2 Crossref |t Physical Review B |v 100 |y 2019 |x 2469-9950 |
773 | _ | _ | |a 10.1103/PhysRevB.100.224409 |g Vol. 100, no. 22, p. 224409 |0 PERI:(DE-600)2844160-6 |n 22 |p 224409 |t Physical review / B |v 100 |y 2019 |x 2469-9950 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/878150/files/PhysRevB.100.224409.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/878150/files/PhysRevB.100.224409.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:878150 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)144121 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-24 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2018 |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-24 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-24 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1038/nature04778 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2019.03.008 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41563-017-0010-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.85.134422 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.75.214425 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2007.07.002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nature09366 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nature08904 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1198804 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41598-017-01077-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2016.05.006 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.91.032703 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.111.105504 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.113.145501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.94.144430 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.89.134428 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1186/s40679-016-0019-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/978-1-4419-6533-2 |1 E. J. Kirkland |2 Crossref |9 -- missing cx lookup -- |y 2010 |
999 | C | 5 | |a 10.1107/S0108767312013189 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2014.11.001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1017/S1431927616009387 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2017.03.019 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/ncomms15536 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1367-2630/aa5f6f |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.105.153601 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acsphotonics.9b00131 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.jmmm.2012.03.050 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/ncomms12672 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2018.10.012 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.96.245121 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2005.03.005 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2009.01.003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S0065-2539(08)60878-1 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.84.064444 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2013.03.021 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2017.01.008 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.76.060408 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.76.060409 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.40.2024 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/978-1-4419-6533-2 |1 E. J. Kirkland |2 Crossref |9 -- missing cx lookup -- |y 2010 |
999 | C | 5 | |a 10.1016/j.ultramic.2012.10.016 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevApplied.11.044072 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41598-018-22234-8 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 P. Blaha |y 2018 |2 Crossref |t WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties |o P. Blaha WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties 2018 |
999 | C | 5 | |a 10.1103/PhysRevLett.77.3865 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/ncomms3781 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|