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Orbital angular momentum resolved electron magnetic chiral dichroism
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We propose to use the recently introduced orbital angular momentum spectrometer in a transmission electron
microscope to perform electron magnetic chiral dichroism experiments, dispersing the inelastically scattered
electrons from a magnetic material in both energy and angular momentum. The technique offers several
advantages over previous formulations of electron magnetic chiral dichroism as it requires much simpler
experimental conditions in terms of specimen orientation and thickness. A simulation algorithm, based on the
multislice description of the beam propagation, is used to anticipate the advantages of the approach over current
electron magnetic chiral dichroism implementations. Numerical calculations confirm an increased magnetic
signal to noise ratio with in plane atomic resolution.
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I. INTRODUCTION

Since its first experimental demonstration [1], electron
magnetic chiral dichroism (EMCD) has attracted great interest
in physics and materials science because it offers the potential
to study the magnetic properties of materials in the transmis-
sion electron microscope (TEM) with atomic spatial resolu-
tion. [2–4] In the earliest formulation of EMCD proposed by
Schattschneider et al. [1,5], the measurement of a dichroic
signal is based on the use of a parallel electron beam, a two
(or three) beam orientation of the crystalline sample, and the
recording of electron energy-loss (EEL) spectra at two specific
positions in the diffraction plane. The drawbacks to this ap-
proach include limited spatial resolution [6] (typically several
nm), poor signal-to-noise ratio and a strong dependence of
the strength of the dichroic signal on sample thickness, with
numerical simulations in Ref. [5] reporting that the signal
can be close to zero at some sample thicknesses. Whereas
the principle of the technique relies on the detection of a
change in the orbital angular momentum of the inelastically
scattered wave, its standard formulation only makes use of
postselection of the scattered momentum.

A recent advance in electron microscopy has involved the
introduction of electron vortex beams [7–9], including the
possibility to create atomic-sized electron vortices [10,11].
Electron beams that have a given topological charge can, in
principle, be focused onto a single atomic column and induce
atomic excitations, with different intensities for transitions
in which the magnetic quantum number changes by �m =

±1 [12]. For example, for 2p → 3d transitions in magnetic
transition metals differences in energy-resolved diffraction
patterns are expected for vortices with opposite orbital angular
momentum (OAM) of ±h̄ because of the different populations

of spin-up and spin-down 3d electronic states [13–15]. These
methods solve some of the issues of the classical EMCD
formulation as they can be performed in zone axis conditions
thus increasing the achievable spatial resolution [4,16,17].

Unfortunately, this approach is difficult for three reasons.
First, it requires two measurements using opposite electron
vortex beams (typically with l = +1 and l = −1), which
cannot easily be performed on exactly the same region due
to sample and probe drift. Second, an electron vortex does not
conserve its OAM while propagating through a crystal, as the
free space cylindrical symmetry is broken by the crystal po-
tential [18–20]. The probing electron in the crystal is therefore
not in a quantum mechanical state with well-defined OAM
during its propagation and parts of it acquire different OAM,
reducing the intensity of the ±h̄ components and, in turn, the
dichroic signal [16]. Third, it is experimentally challenging
to prepare a high-quality coherent atomic size electron vortex
beam [10].

These drawbacks can be solved if a standard electron probe
can be used and postinteraction analysis in terms of OAM can
be performed on the inelastically scattered electrons [21], as
proposed in Ref. [22] for amorphous materials. Accordingly,
here we propose a new approach for performing EMCD
experiments based on postselection in both energy and OAM
of inelastically scattered electrons from a crystalline magnetic
sample. The proposed setup is shown schematically in Fig. 1.

A conventional focused electron probe, which has been
formed using a circular aperture, is used to image a magnetic
sample along a high symmetry zone axis. Two phase elements
(referred to as OAM sorters) [23–25], which are located
in the objective and selected area diffraction planes of the
microscope column, are used to spatially separate the OAM
components of the electron beam. If these elements have an
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FIG. 1. Proposed experimental setup needed to perform an
OAM-resolved electron energy-loss (EEL) spectroscopy experiment
in a scanning TEM (STEM).

appropriate orientation, then the electrons can be analyzed
using an energy-selecting spectrometer (whose aperture is
located in the diffraction plane of Sorter 2) to achieve double
dispersion of the electrons (in orthogonal directions) in both
energy and OAM [26].

In contrast to the use of an electron vortex beam as a
probe, this setup allows the two spectra that are needed for
an EMCD measurement to be recorded simultaneously, as
already reported for some classical EMCD measurements
[27–31]. Furthermore, the sample can be oriented along a
high symmetry direction, allowing for atomic resolution. In
addition, as we explain below, a large fraction of the inelastic
signal can be used to record the EMCD spectra, being the only
limiting factor the efficiency of the sorting apparatus.

II. THEORY

We begin by describing the theory that is required to
simulate OAM-resolved core loss spectra I (l,�E ) in crys-
talline samples using multislice calculations. Interestingly, the
formalism that is required to describe EMCD spectra becomes
clearer once a description in terms of electronic OAM is used,
when compared to a description in terms of linear momentum.

The combined use of OAM sorters and an EEL spectrom-
eter provides access to the quantities

I (l,�E ) = Tr[ρ̂F P̂lE ], (1)

where ρ̂F is the electron density matrix after passing the
sample, P̂lE =

∫
dk|l, k, E〉〈l, k, E | and E = E0 − �E is the

energy of an electron that has lost energy �E . The quan-
tum states |l, k, E〉 are characterized by OAM values h̄l and
energies E , while k is a quantum number whose physical
meaning is explained below. The quantity I (l,�E ), which is
experimentally available using the proposed setup, defines the
number of electrons that have energy E0 − �E and are found

in a state with OAM equal to h̄l . The dichroic signal can be
obtained as a difference between I (+1,�E ) and I (−1,�E ).

We make use of the approach described in Ref. [32]
to simulate OAM-resolved core loss spectra. We adapt the
formalism, which is reviewed here for completeness, from
a momentum-defined to an angular-momentum-defined final
state basis, based on the following approximations:

(1) The electrons are assumed to undergo single inelastic
processes while passing through the sample. This approxima-
tion is justified by the low probability of core loss excitation;

(2) The energy of the probing electrons is assumed to
be 300 keV. We work in the paraxial approximation, for
which the electron wave function can be written �(r) =

eikzzφ(r⊥; z), where we use the definition φ(r⊥; z) ≡ 〈r⊥|φz〉

below for the transverse wave function at height z;
(3) We use the z-locality approximation [33,34], where the

state of an electron after inelastic scattering from an atom
located at a can be written |φ

i, fa
z=za

〉 = −iσV̂
proj

i→ f
|φz=za

el〉, the

atom at a experiences a transition |i〉 →| f 〉, |φz=za

el〉 is the
electron state at z = za before inelastic scattering, V̂

proj
i→ f

is
defined in Eq. (4) in Ref. [32] and σ is a parameter that
depends only on the energy of the electron beam;

(4) We consider a highly symmetrical cubic crystal, i.e.,
bcc iron. This assumption simplifies the definitions of the
quantities of interest. However, the conclusions that we ob-
tain for this system can be generalized to less symmetrical
samples.

The final density matrix ρ̂F can be written in single scatter-
ing approximation as

ρ̂F =
∑

a, f ,i

∣∣φi, fa

z=t

〉〈
φ

i, fa

z=t

∣∣

|φ
i, fa

z=t 〉 being the state of an electron that has experienced an
inelastic scattering event at z = za and has then elastically
propagated up to the exit surface of the sample (z = t). So
starting from Eq. (1), we can write

I (l,�E ) =
∑

a,i, f

∫ KMax (α)

0
kdk

∣∣〈l, k
∣∣φi, fa

z=t

〉∣∣2
δ(�E + ε f − εi )

= Iα (l,�E . (2)

The states |l, k〉 are defined such that 〈r⊥|l, k〉 =

eilϕJ|l|(k|r⊥|), i.e., they correspond to Bessel beams with
orbital angular momentum l h̄ and transverse wave vector
k. The integral over k in Eq. (2) is performed up to
KMax(α) = 2πα/λ, where α is the numerical aperture of
the OAM sorter in the back focal plane of the objective
lens, while λ is the electron de Broglie wavelength, which
takes a value of 1.97 pm at 300 kV. This also defines
the maximum collection angle of the experimental setup,
assuming no limitation on the energy spectrometer. The
electron state immediately after the inelastic event at z = za

(i.e., |φ
i, fa
z=za

〉) is related to the one at z = t through the unitary
evolution operator U (t, za) defined by Eq. (3) of Ref. [32],
by the relation |φ

i, fa

z=t 〉 = U (t, za)|φi, fa
zza

〉. Therefore, by direct
substitution in Eq. (2) of this relation and exploiting the
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property U (za, t ) = U −1(t, za) = U †(t, za) we obtain

Iα (l,�E ) = σ 2
∑

a,i, f

∫ KMax (α)

0
kdk〈l, k|U †(za, t ) V̂

proj
i→ f

∣∣φel
z=za

〉

×
〈
φz=za

el
∣∣V̂ proj

i→ f
U (za, t )|l, k〉δ(�E + ε f − εi ).

Now we recognize that (za, t )|l, k〉 = |lkBP〉, i.e., it cor-
responds to the wave function obtained elastically back-
propagating the Bessel beam |l, k〉 from the bottom of the
sample to z = za. Therefore, it is immediate to realize that

Iα (l,�E ) = σ 2
∑

a,i, f

∫ KMax (α)

0
kdk

∣∣〈lkBP
∣∣V̂ proj

i→ f

∣∣φel
z=za

〉∣∣2

× δ(�E + ε f − εi ) =

∫ KMax

0
I (l, k,�E )kdk

with

I (l, k,�E ) = σ 2
∑

a,i, f

∣∣〈lkBP|V̂
proj

i→ f

∣∣φel
z=za

〉∣∣2
δ(�E + ε f − εi ),

(3)

the function that describes the dependence of the OAM
resolved loss function from the transverse scattering wave
vector k.

Proceeding as in Ref. [32], it is possible to rewrite
I (l, k,�E ) as

I (l, k,�E ) = σ 2
∑

a

∫
dk1 . . .

∫
dk4D∗(k1; l, k)C(k2)

× D(k3; l, k)C∗(k4)
Sa(q̃, q̃′,�E )

q̃2q̃′2
ei(q−q′ )a,

(4)

where the sum over a is performed over atomic positions
at which the inelastic process of interest can occur. Given
the infinitesimal distribution in k, D(k1; l, k) is the three-
dimensional Fourier transform of an elastically scattered
Bessel beam with topological charge l , transverse wave vector
k and energy E0 − �E propagating from the exit to the
entrance surface of the crystal.

In this expression, the energy dependence of D(k1; l, k) is
neglected, as we focus on a small range of energy losses �E

in the interval [�Emin,�Emax] = [690, 750]eV. The propaga-
tion of an electron of energy E0 − �Emin is similar to that of
one with energy E0 − �Emax because E0 ≫ �Emax, �Emin.

Analogously, C(k2) is the three-dimensional Fourier trans-
form of an incident beam that propagates elastically in the
material with energy E0, from the bottom to the top of the sam-
ple. Both D(k1; l, k) and C(k2) can be obtained by performing
three-dimensional Fourier transforms of the wave function
inside the crystal, computed using a multislice calculation.
The quantities q̃, q̃′, q, and q′ appearing in Eq. (4) are defined
as [32]

q̃ = k⊥
1 − k⊥

2 + q�E ẑ q̃′ = k⊥
3 − k⊥

4 + q�E ẑ,

q = k1 − k2 q′ = k3 − k4,

q�E = k f
z − ki

z.

q and q′ are the elastic scattering wave vectors in the crystal,
while q̃ and q̃′ differ from the precedent ones only through the
z components, given in this case by q�E , which corresponds to
the difference between the final and the initial z components
of the electron beam’s wave vector; as detailed in Ref. [32],
q̃ and q̃′ directly appear in the expression of the loss function
once the z-locality approximation is taken into account.

In Eq. (4), Sa(q̃,q̃′,�E ) is the atomic mixed dynamic
form factor [35], which provides the energy dependence of
I (l, k,�E ): further, it also plays a crucial role in the OAM
dependence (which can be seen by expanding it in spherical
harmonics), in the k dependence (by coupling different k

components in the incident and outgoing beams), and in the
thickness dependence of the detected signal. Working within
the dipolar approximation, we can write [36]

Sa(q̃,q̃′,�E ) = q̃Na(�E )q̃′ + iMa(�E )[q̃ × q̃′],

where Ma(�E ) is a vector that describes the magnetic
properties of the sample, while Na(�E ) is a real symmetric
tensor, taking into account the nonmagnetic contributions to
the signal. We assume that the magnetic field of the objective
lens is sufficiently strong to saturate the magnetization in the
sample along z: only the z component of Ma(�E ) is then
nonzero. For a cubic crystal whose axes are parallel to x̂, ŷ,

and ẑ, Na(�E ) becomes a diagonal tensor, with all of the
diagonal elements equal to each other. [37]. A set of functions
[38] can be introduced allowing to group together the different
terms that are associated with dynamical diffraction effects.
We define

Qi
a(l, k) = σ

∫
dk1

∫
dk2D∗(k1; l, k)C(k2)

q̃i

q̃2
ei(q−q′)a

i = x, y, z, (5)

Xi(l, k) =
∑

a

|Qi
a(l, k)|2, (6)

S̃(l, k) = −2Im

[∑

a

Qx
a(l, k)Qy

a(l, k)∗
]
. (7)

The loss function then assumes the form

I (l, k,�E ) =
∑

i=x,y,z

Ni(�E )Xi(l, k) + M(�E )S̃(l, k), (8)

where we have neglected the dependence of N and M on
atom type, as we focus on energy losses produced by atoms
of the same type and the same coordination geometry in the
crystal.

The functions Xi(l, k) and S̃(l, k) describe the effect of
dynamical diffraction in the crystal and need to be tuned to
achieve optimal experimental conditions; further, as shown
in the Appendix A, the functions Xi and S̃(l, k) satisfy the
properties

Xi(l, k) = Xi(−l, k) and S̃(l, k) = −S̃(−l, k)

Exploiting these relations, we define a relative dichroic func-
tion R|l|(k) for cubic crystals (the ones considered in the
present work), for which Ni(�E ) = N (�E ) for i = x, y, z:

100
I (l, k,�E ) − I (−l, k,�E )

I (l, k,�E ) + I (−l, k,�E )
=

M(�E )

N (�E )
R|l|(k).
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In practice R|l|(k) describes how the dynamical effects associ-
ated to the electron beam elastic propagation inside the crystal
affect the strength of the dichroic signal [i.e., the difference
between I (l, k,�E ) and I (−l, k,�E ) normalized by its sum]
evaluated at a fixed transverse wave vector k: although pre-
sented for the case of cubic materials, such a definition could
be also generalized to crystals with other symmetries, even
if such a defined separation among the energy dependence
[here represented by the ratio M(�E )

N (�E ) ] and the dynamical
diffraction effects would not be so direct. During the proposed
experiment we measure the integral of these functions over a
range of vectors determined by the semicollection angle α of
the OAM spectrometer, i.e., Iα (l,�E ).

Therefore, we define integrated OAM dependent dynami-
cal coefficients χi(l, α) and �(l, α)

χi(l, α) =

∫ KMax (α)

0
kdkXi(l, k),

�(l, α) =

∫ KMax (α)

0
kdkS̃(l, k),

which, respectively, correspond to the nonmagnetic and mag-
netic integrated contributions to the OAM loss function at a
certain l: the dependence from α comes from the fact that their
values change by modifying the experimental semicollection
angle. Notice that these quantities satisfy the same relations
valid for their not-integrated counterparts, i.e., χi(l, α) =

χi(−l, α) and �(l, α) = −�(−l, α).
Using these definitions and considering Eq. (8) we can now

express the integrated OAM resolved loss function as

Iα (l,�E ) =
∑

i=x,y,z

Ni(�E )χi(l, α) + M(�E )�(l, α). (9)

We can now exploit these integrated quantities to define a
dichroism function Dl

α (�E ) for a certain OAM l , which
can be determined directly from the experimentally measured
OAM loss function accessible from the experimental setup
outlined in the precedent section: such a function is given by

Dl
α (�E ) = 100

Iα (l,�E ) − Iα (−l,�E )

max�E (Iα (l,�E ) + Iα (−l,�E ))
. (10)

The dichroism function is normalized to the maximum com-
bined intensity of the +l and −l loss functions over the entire
energy range in order to leave the energy dependence of Dl

α

only being determined by the difference between Iα (l,�E )
and Iα (−l,�E ). This normalization is convenient, because
one can directly apply EMCD sum rules [39,40] to such
dichroic function.

Now, using Eq. (9), the properties of χi(l, α) and �(l, α)
and assuming a cubic crystal it is simple to demonstrate that

Dl
α (�E ) = 100

M(�E )�(|l|, α)

max�E

(
N (�E )

∑
i=x,y,z χi(|l|, α)

) . (11)

This function describes the strength of the dichroic signal for
a certain |l|, which can be obtained experimentally and also its
dependence from the energy loss and the collection semiangle
chosen for the experiment.

All these quantities have been computed using a modified
version of the software MATSV2 [38]: previous releases of
the software were based on a mixed multislice/Bloch wave

approach for the propagation of the incoming and reciprocal
beam, respectively. In order to allow for the back propagation
of the reciprocal Bessel beam we updated the code to a full
multislice for both direct and reciprocal wave. As a conse-
quence the number of terms of the summation in Eq. (5) is
vastly increased, requiring a more elaborate way of grouping
them (see Ref. [38]) to speed up the calculation.

III. RESULTS AND DISCUSSION

In this section, we present calculations of the nonmagnetic
signal Xi(l, k) and the magnetic signal S̃(l, k) for l = [−2; 2]
and different values of k for bcc Fe oriented along the [001] di-
rection. In the simulations, we use an orthogonal supercell of
size [20 × 20]a (where a = 0.287 nm is the lattice parameter
of Fe), considering thicknesses of 40 and 20 nm. The electron
probe is centered on an Fe column at (0,0) and the signals
Xi(l, k) and S̃(l, k) are evaluated by summing the products
D∗(k1; l, k)C(k2) for a convergence parameter of 5 × 10−9.

Figure 2(a) shows the magnetic term S̃(l, k) for different
values of l , taking a STEM probe with semiconvergence
angle of 7.3 mrad and considering a 40-nm-thick sample. In
agreement with the conclusions reported in the Appendix A
(i.e., S̃(l, k) = −S̃(−l, k)), for l = +1 this function is equal
in modulus but opposite in sign to that evaluated for the
opposite topological charge and is zero if the orbital angular
momentum is taken to be zero. It is also negligible for larger
values of |l|, as we are working in dipolar approximation,
which is a reasonable assumption as, in the angular range
considered in this work, dipole-allowed transitions are by far
dominant [41].

Figure 2(b) shows the nonmagnetic term
∑

i Xi(l, k) (us-
ing the same probe and the same thickness as in Fig. 2(a),
which is nonzero for l = 0. It decreases more rapidly than
the nonmagnetic contribution for l = ±1 and is peaked at
smaller scattering angles (λk). In contrast to the magnetic
terms, these quantities are independent of the sign of the
OAM [as

∑
i Xi(1, k) =

∑
i Xi(−1, k)], while they become

negligible for |l| > 2. The presence of intensity for |l| > 1
is only dictated by the fact that OAM is not conserved during
elastic scattering in the crystal, thus giving rise to signals for
larger |l|.

Notice that both the magnetic and nonmagnetic contribu-
tions for |l| = 1 are peaked at a scattering angle of about
7 mrad: in order to test if the position of this maximum
is dependent from the probe convergence and/or the sample
thickness, we have performed calculations for a sample of
20 nm, with various STEM probes: the results for the mag-
netic term evaluated for l = −1 are presented in Fig. 2(c).
It is simple to realize that these functions are all peaked at
7 mrad, independently from both the sample thickness and the
convergence of the STEM probe.

Finally, in Fig. 2(d) we display the relative dichroic func-
tion R|l|=1(k) in terms of the transverse scattering angle λk for
a STEM probe of 7.3 mrad and samples of 20 and 40 nm.

As described in the previous section, this function de-
scribes the effect of the electron dynamical diffraction in the
crystal on the strength of the dichroism, as a function of
k: the fact that the overall trends of these functions do not
strongly change modifying the sample thickness practically
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FIG. 2. (a) Magnetic S̃(l, k) and (b) nonmagnetic
∑

i Xi(l, k) terms plotted vs scattering angle λk for l in the interval [−2;+2], assuming
a STEM probe of 7.3 mrad and a bcc Fe sample of 40 nm. (c) Functions S̃(l, k) for l = +1 computed for a bcc Fe sample with thickness of
20 nm for different STEM convergence of the STEM probe: notice that as in the case of the sample of 40 nm this function is still peaked at
about 7 mrad and this also appears to be independent from the convergence of the probe itself. (d) Relative dichroic function R|l|=1(k) plotted
vs scattering angle computed for a samples of 20 and 40 nm, taking an incident beam with semiconvergence angle of 7.3 mrad: notice that the
overall trend of this function seems to be almost independent from the sample thickness.

suggests that the intensity of the dichroic signal within this
experimental setup is expected to be only weakly dependent
from the thickness itself.

This analysis points out that with semicollection angles
of the order of 7–10 mrad, an intense dichroic signal is
expected to be observed. It is clear that a finer optimization
of the experimental conditions for OAM-resolved EMCD will
require the real efficiency of the OAM sorters to be taken into
account, which will be the object of future experimental work.

In the following we will assume to work with semicol-
lection angles of 7 mrad, a range accessible with the OAM
spectrometer already presented in Ref. [23].

It is interesting to find a possible rationale for the depen-
dence of S̃(±1, k) and Xi(±1, k) from the transverse wave
vector k: in particular the reason for which these functions are
peaked at the same value of k, and they decrease in strength by
increasing k, independently from the probe convergence and
the sample thickness.

In Appendix B we provide an approximate evaluation of
the function Qi

a(l, k) for i = x, y, as the imaginary part of
the product of these two function defines S̃ [see Eq. (7)]
and their square modulus gives important contribution to
the nonmagnetic dynamical coefficient [see Eq. (6)]. What
emerges is that the larger (on average) the strength of the
OAM component m = ±1 of the back propagating Bessel
beam |l, k〉, the larger the value of Q

x,y
a (l, k) computed for

that specific pair of indices (l, k). So taking l = ±1, the

approximate reasoning exposed in Appendix B suggests us
that S̃(±1, k) and Xi(±1, k) are peaked at about 7 mrad be-
cause Bessel beams |l = ±1, λk = 7 mrad〉 have on average
along z a larger m = ±1 contribution with respect to those
associated with larger transverse wave vectors. To confirm
this point we performed multislice calculation [42,43] of the
propagation of Bessel beams with various wave vectors k and
l = +1 in a bcc Fe sample with thickness of 40 nm and we
computed the OAM decomposition for the beam at different
depths z: in other words, the coefficients Dl=+1,k

m (z) defined in
Appendix B have been evaluated for various m.

These coefficients, for some transverse wave vectors are
shown in Fig. 3(a) (see legend): we see that for λk slightly
smaller than 7 mrad Dl=+1,k

m (z) is (on average along z) smaller
than the one computed for λk = 7 mrad for every thickness;
at the same time, by increasing λk beyond 7 mrad we observe
that these coefficients progressively decrease in intensity as
functions of z. These conclusions are in qualitative agreement
with what has been deduced from the approximate analytical
treatment exposed in Appendix B.

To further clarify the reason why a Bessel vortex beam
|l = ±1, λk = 7 mrad〉 is able to better preserve its OAM
with respect to Bessel beams with larger or smaller transverse
wave vectors we have performed Bloch wave calculations
using our custom software B_WISE following the procedure
reported in Ref. [44]: the incident probe is sampled, in Fourier
space, into many points and for each one of these points
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FIG. 3. (a) Functions Dl=1,k
m=1 computed for various transverse wave vectors at different z in the crystal: notice that for large k the component

m = 1 decreases more rapidly than for k close to 7 mrad. (b) and (c) Spectrum of the Bloch wave excited by a Bessel beam with transverse

wave vector of 7 mrad and 10 mrad respectively. (d) and (e) the complex wave functions corresponding to the states having 42 and −5 Å
−2

transverse energy respectively (modulus and phase encoded in brightness and color). (f) excitation of the state presented in (e) as a function
of the transverse wave vectors. Notice that the excitation is maximum around 6–7 mrad, while it rapidly decreases for larger values of k: as
such a state is characterized by a strong l = 1 component, it is reasonable to expect the Bessel beams with k in this range to better preserve its
original OAM.

we performed a Bloch wave calculation. The resulting Bloch
coefficients are then summed together, taking into account
the appropriate phase, in narrow ranges of the transverse
kinetic energy (or anpassung parameter) to produce a spectral
representation of the convergent probe propagating inside the
crystal.

In Figs. 3(b) and 3(c) we present the transverse energy
spectra of the excited Bloch states intensities for λk = 7 mrad
and λk = 10 mrad Bessel beams, respectively. Two main
peaks appear in the spectra: the first one is located at an

energy of approximately 42 Å̇
−2

and correspond to highest
energy Bloch state, usually called 1s state because of its
resemblance with the homonymous atomic state, and the

second one located at about −5 Å
−2

. The wave functions of
the two states are reported in Figs. 3(d) and 3(e), respectively.
Both the states show a well-defined l = 1 vortex along the
central atomic column, whereas other lower energy states (not
shown here) are delocalized over many unit cells, therefore it
is easy to assume that these two states are responsible for the

OAM conservation. Noticeable, the excitation of the −5 Å
−2

state is strongly affected by the
Bessel beam’s transverse wave vector and drastically de-

creases passing from λk = 7 mrad to λk = 10 mrad. The

excitation of the 42 Å̇
−2

state is instead less affected. What
naturally follows is to trace the behavior of the excitation of

the −5 Å
−2

state over a wide range of angles, as reported

in Fig. 3(f). This shows a maximum at 6–7 mrad and overall
shape strictly follows the k dependence of the cross sections
reported in Fig. 2.

It is important to understand if the approach described here
provides access to magnetic properties with atomic spatial
resolution. According to the definition of S̃(l, k) in Eq. (7),
the sum is performed over all of the magnetic atoms in the
sample, not only those in the column on which the STEM
probe is focused. In order to clarify this point, we evaluated
the contributions to the magnetic signal [Figs 4(a) and 4(c)]
and the nonmagnetic signal [Figs. 4(b) and 4(d)] for l = +1
for both the atoms in the column on which the probe is
centered and those in the neighboring columns [38,45]. The
magnitudes of the terms are represented as solid spheres
centered on each atomic position. The radius of each sphere
is directly proportional to the modulus of that term. The same
information is encoded in the spheres’ colors on a logarithmic
scale (see color bars in Fig. 4). The contributions decrease
rapidly for atoms that are not on the column centered at
the origin, suggesting that the measured signal comes almost
entirely from the atomic column of interest. Atomic spatial
resolution in measuring the magnetic properties of the mate-
rial is therefore expected.

Once the functions that describe dynamical diffraction of
the electron beam in the sample are known, it is possible
to estimate OAM-resolved EEL spectra using Eq. (9). The
functions N (�E ) and M(�E ) have been evaluated using first
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FIG. 4. (a) and (c) Two- and three-dimensional views, respectively, of contributions to the function �(l = 1, α = 7 mrad) from atoms
close to and on the atomic column on which the electron probe is centered. Each atom is surrounded by a sphere, whose radius (and color, on
a logarithmic scale) is proportional to the strength of the contribution from that atom. On increasing the distance from the atomic column at
(0, 0), there is a rapid decrease in the contribution from the atoms to S. (b) and (d) Corresponding depictions for the nonmagnetic part of the
signal.

principles calculations [5,37], while the maximum collection
angle was fixed to 7 mrad. First principles calculations were
performed for bcc Fe using the WIEN2K package [46] using
the generalized gradient approximation for the exchange-
correlation functional [47] and including spin-orbit coupling
effects. The atomic sphere radius of Fe was set to 2.33 Bohr
radii, the basis size cutoff was RKmax = 8.0 and Brillouin zone
integrations were performed using a modified tetrahedron
method with 10000 k points. The upper panel of Fig. 4(a)
shows the resulting spectra for different values of OAM, while
lower panel shows the dichroic function defined in Eq. (10).
The quantity D|l|=1

α (�E ) (computed for a semicollection an-
gle α = 7 mrad) reaches values of ∼ 15% (or more) at both
the L2 and the L3 Fe edges. This quantity is much larger than
the relative dichroic signal that is observed using conventional
approaches to EMCD.

As outlined above, this approach should provide access to
double dispersion, in perpendicular directions, as a function
of energy and orbital angular momentum. However, in reality

the spectra shown in Fig. 5(a) are different from those that we
expect to measure. In order to obtain results that are similar to
those expected from a real life experiment, our treatment must
include broadening in energy of the electron beam (as it is not
perfectly monochromatic) and finite energy resolution of the
OAM sorters. What we expect to observe in practice is

Ŵ(l, �E ) = Iα=7mrad(l,�E ) ⊗ f (l,�E ), (12)

where f (l,�E ) is the product of two Gaussian functions
describing broadening introduced by the experimental setup.
The OAM is treated as a continuous variable, since the sorter
can transform a vortex with topological charge l in a spot
centered at coordinate Cl [23–25] with a lateral extension
equal to C�l (where C is a constant that depends on the sorter
parameters and is assigned a value of unity for simplicity in
the images presented in the main text).

Figure 5(b) shows the result of this convolution procedure
for �l = 0.5h̄ and �E = 0.7eV, as this is the resolution
expected using a sorter in a fan-out configuration, as recently
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FIG. 5. (a) Upper panel: OAM-resolved EEL spectra computed for l in the range [−2;2] for a collection semiangle of 7 mrad and sample
thickness of 40 nm. Lower panel: Dl=1(�E ) defined in Eq. (10), in which the dichroism strength reaches values of ∼ 18% for both the L2

and the L3 edge of Fe. (b) Convolution of the spectra shown in (a) with the product of two Gaussian functions describing broadening in OAM
(0.5h̄) and energy (0.7 eV) introduced by the OAM sorters and nonmonochromaticity of the electron beam.

demonstrated for optical sorters [48]. Despite the finite OAM
resolution, which introduces partial mixing of the signal
at l = 0 with that for l = ±1, strong asymmetry between
Ŵ(+1, �E ) and Ŵ(−1, �E ) is observable.

It should be remarked here that the inelastic signal that
we observe for l = ±2 is not due to electron transitions with
a change in OAM equal to ±2h̄, as our approach is based
on a dipolar approximation, but it is only due to a lack of
OAM conservation for a beam that propagates in a crystal.
More precisely, once an electron has experienced an inelastic
event, it keeps propagating in the crystal but its OAM is
not conserved and acquires components corresponding to l �=

0,±1 (e.g., for l = ±2), giving rise to a nonzero signal.
Figure 6 shows in-plane spatial mapping of the dichroic

function D|l|=1
α (�E ) obtained by computing OAM-resolved

EEL spectra following the procedure outlined above, but
scanning the STEM probe across the sample. In Figs. 5(a)
and 5(b), the function is computed for the L2 and L3 edges,
respectively, at energies of �E = 720 and 708 eV. In absolute
value, the strength of the relative dichroism is maximum when
the electron beam is centered on an atomic column for both
edges, whereas it decreases by a factor of 2 when the probe

is moved between columns, thereby providing information
about the magnetic properties of the sample with atomic
spatial resolution.

IV. CONCLUSIONS

We report an approach that can be used to probe electron
magnetic chiral dichroism in the transmission electron mi-
croscope by exploiting the recently demonstrated capability
of evaluating the orbital angular momentum spectrum of an
electron beam. By focusing on the simple case of bcc Fe,
we introduce the required theoretical framework and we show
that this approach should provide strong dichroic signals with
atomic spatial resolution, even without requiring very high
resolution in orbital angular momentum.
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FIG. 6. Spatial mapping of the function Dl=1
α=7mrad computed for the Fe (a) L2 and (b) L3 edges. The contrast in the images provides access

to atomically resolved mapping of magnetic properties of the sample.
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APPENDIX A: PROPERTIES OF S̃(l, k) AND Xi(l, k)

In this appendix, we demonstrate the following properties:

S̃(l, k) = −S̃(−l, k),

Xi(l, k) = Xi(−l, k).

We assume that the crystalline potential satisfies the symmetry
operation

V (x, y, z) = V (−x, y, z). (A1)

We begin by explicitly writing the function D(k1; l, k) in the
form

D(k1; l, k)∗ =

∫
dzeizkz

1

∫
dr⊥eik⊥

1 r⊥

× [U +(r⊥, z)eilϕJ|l|(k|r⊥|)e−izk f ]∗, (A2)

where r⊥ = (x, y), U (r⊥, z) is an evolution operator defined in
Ref. [32] and k f is the projection along the z axis of the wave
vector of the inelastically scattered electron. The operator
U (r⊥, z) is invariant under symmetry operations of the crystal,
so in our case

U (x, y, z) = U (−x, y, z). (A3)

By performing the substitution x → −x′ in Eq. (A2), exploit-
ing Eq. (A3) and remembering that

∫ +∞

−∞

dx →

∫ −∞

+∞

−dx′ =

∫ +∞

−∞

dx′,

ϕ = atan
y

x
→ ϕ′ = atan

y

−x′
= −ϕ,

J|l|(k|r⊥|) = J|−l|(k|r⊥|),

we find that

D(k1; l, k)∗ =

∫
dzeizkz

1

∫
dx′dye−ikx

1x′

eik
y

1y

× [U +(−x′, y, z)e−ilϕJ|l|(k|r⊥|)e−izk f ]∗

= D
(
−kx

1, k
y

1, kz
1; −l, k

)∗
.

Using this relation in the definition of Qx
a(l, k) results in the

expression

Qx
a(l, k) =

∫
dk1

∫
dk2D

(
−kx

1, k
y

1, kz
1; −l, k

)∗

×C(k2)
kx

1 − kx
2

q̃2
eiqa, (A4)

which (with the substitutions −kx
1 → k′x

1 and −kx
2 → k′x

2 ) can
be rewritten

Qx
a(l, k) = −

∫
dk′

1

∫
dk′

2D
(
k′x

1 , k
y

1, kz
1; −l, k

)∗

×C
(
−k′x

2 , k
y

2, kz
2

)k′x
1 − k′x

2

q̃2
e−i(k′x

1 −k′x
2 )ax

× ei(ky

1−k
y

2 )ay ei(kz
1−kz

2 )az , (A5)

from which it is apparent that Qx
axayaz

(l, k) =

−Qx
−axayaz

(−l, k).

By proceeding in the same manner, it is possible to
show that Q

y
axayaz

(l, k) = Q
y
−axayaz

(−l, k) and Qz
axayaz

(l, k) =

Qz
−axayaz

(−l, k). Therefore, using the definition of S̃(l, k), we
have

S̃(l, k) = −2Im

[∑

a

Qx
axayaz

(l, k)Qy
axayaz

(l, k)∗
]

= 2Im

[∑

a

Qx
−axayaz

(−l, k)Qy
−axayaz

(−l, k)∗
]

= −S̃(−l, k),

where we have exploited the fact that, because of Eq. (A1),
if we have an atom at position (axayaz ) then we will have an
analogous atom at position (−axayaz ). By the same reasoning,
Xi(l, k) = Xi(−l, k) for i = x, y, z.

APPENDIX B: EVALUATION OF Qx,y
a

The magnetic and nonmagnetic parts of the signal, are
defined by Eqs. (6) and (7), as products of the Qx

a(l, k) and
Q

y
a(l, k) quantities summed over all the magnetic atoms of the

sample. In this section we present an approximate analytical
calculation of Q

x,y
a (l, k) in order to understand the trend of the

scattering cross section as a function of the transverse wave
vector k: in particular our target is to understand the origin
of the peak at about 7–8 mrad and the reason for which this
function decreases by increasing k.

As a first step we assume to consider only the atoms a

located on the column at (0,0): as shown in Sec. III, this is rea-
sonable as the inelastic signal mainly comes from these atoms.
Therefore [considering Qx

a(l, k), even if a similar treatment is
also valid for the y component]

Qx
a(l, k) = σ

∫
dkz

1

∫
dkz

2ei(kz
1− kz

2 )aD∗(k1; l, k)C(k2)

×
kx

1 − kx
2

|k⊥
1 − k⊥

2 |
2
+ q�E

2
.

Calling ϕinc(r) and ϕlk
BP(r), respectively, the incident wave

function and the back propagated Bessel beam with indices
(l, k) in a point r in the crystal, we develop them in terms
of Bessel functions with different topological charges and
transverse wave vectors, i.e.,

ϕlk
BP(r) =

∑

k′,n

dn
lk (k′; z)Jn(k′|r⊥|)einφ,

ϕinc(r) =
∑

k′′, m

cm(k′′; z)Jm(k′′|r⊥|)eimφ .

The functions dn
lk (k′; z) and cm(k′′; z), respectively, determine

the weight of the corresponding Bessel beam to the functions
ϕlk

BP(r) and ϕinc(r) at a certain depth z in the crystal: the
integral over the transverse wave vectors of the modulus
square of these terms can be numerically evaluated through
multislice calculations and they basically indicate the strength
of the component with OAM nh̄ and mh̄ to the overall beam at
this depth: clearly, the larger the modulus dn(k′; z), the larger
the component with OAM nh̄.
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Exploiting the Fourier transform of a Bessel beam in two
dimensions, i.e.,

∫
dr⊥e−ik⊥r⊥

Jl (k|r⊥|)eilφ = δ(|k⊥| − k) eilφk ,

we obtain

D∗(k1; l, k) =
∑

k′,n

∫
dzeikz

1zdn
∗lk (k′; z)e−inφ1δ(k′ − |k⊥

1 |),

and

C(k2) =
∑

k′′, m

∫
dze−ikz

2z cm(k′′; z)eimφ2δ(k′′ − |k⊥
2 |),

where φ1 = φk⊥
1

and φ2 = φk⊥
2

. By direct substitution in the
expression for Qx

a(l, k) we can find

Qx
a(l, k) = σ

∑

k′,n

∑

k′′,m

cm(k′′; a)dn
∗lk (k′; a)

∫ 2π

0
dφ1

×

∫ 2π

0
dφ2

∫ ∞

0
|k⊥

1 |d|k⊥
1 |

∫ ∞

0
|k⊥

2 |d|k⊥
2 |

×
δ(k′ − |k⊥

1 |)δ(k′′ − |k⊥
2 |)

(
kx

1 − kx
2

)
eimφ2 e−inφ1

|k⊥
1 − k⊥

2 |
2
+ q�E

2
,

which becomes, after exploiting the properties of Dirac delta
functions

Qx
a(l, k) = σ

∑

k′,n

∑

k′′,m

cm(k′′; a)dn
∗lk (k′; a)k′k′′

×

∫ 2π

0
dφ1

∫ 2π

0
dφ2

(
k̃x

1 − k̃x
2

)
eimφ2 e−inφ1

|k̃
⊥

1 − k̃
⊥

2 |
2
+ q�E

2
.

where k̃
⊥

1 = k′(cos φ1, sin φ1) and k̃
⊥

2 = k′′(cos φ2, sin φ2).
To proceed further with an analytical treatment we need to

introduce two approximations:
(1) The integrand 1

|k̃
⊥

1 − k̃
⊥

2 |
2
+q�E

2
has its larger values once

|k̃
⊥

1 | ≈ |k̃
⊥

2 |, i.e., if k′ ≈ k′′. Therefore in the following we will
fix k′ equal to k′′.

(2) We consider only the m = 0 component of the incident
beam [cm=0(k′′; a)] in the sum appearing in the expression for
Qx

a(l, k) as other components only come from neighboring
columns.

Under these assumptions we can write

Qx
a(l, k) ≈ σ

∑

k′,n

c0(k′; a)dn
∗lk (k′; a)k′3

∫ 2π

0
dφ1

∫ 2π

0
dφ2

×
(cos φ1 − cos φ2)e−inφ1

4k′2sin2
(

φ2− φ1

2

)
+ q�E

2
.

Now we group the integrals over φ1 and φ2 in a single function
ζ (k′) defined as

ζ (k′) =

∫ 2π

0
dφ1

∫ 2π

0
dφ2

(cos φ1 − cos φ2)e−inφ1

4k′2sin2
(

φ2− φ1

2

)
+ q�E

2
.

Performing the substitution φ2 − φ1 = τ we find

ζ (k′) =

∫ 2π

0
dφ1 cos φ1e−inφ1

×

∫ 2π− φ1

−φ1

dτ
1

4k′2sin2
(

τ
2

)
+ q�E

2

−

∫ 2π

0
dφ1 cos φ1e−inφ1

×

∫ 2π− φ1

−φ1

dτ
cos τ

4k′2sin2
(

τ
2

)
+ q�E

2

+

∫ 2π

0
dφ1 sin φ1e−inφ1

∫ 2π−φ1

−φ1

dτ

×
sin τ

4k′2sin2
(

τ
2

)
+ q�E

2
.

All the integrands of the integrals over τ are functions f

such that f (τ ) = f (τ − 2π ) Therefore,
∫ 2π− φ1

−φ1

dτ f (τ )

=

∫ 0

−φ1

dτ f (τ ) +

∫ 2π−φ1

0
dτ f (τ )

=

∫ 0

−φ1

dτ f (τ ) +

∫ 2π

0
dτ f (τ ) −

∫ 2π

2π−φ1

dτ f (τ ).

By the substitution τ → τ − 2π in the last integral we can
easily find

∫ 2π

2π−φ1

dτ f (τ ) =

∫ 0

−φ1

dτ f (τ ),

which simplifies with the first term: so the dependence of the
overall integral from φ1 disappears.

Therefore,

ζ (k′) =

∫ 2π

0
dφ1 cos φ1e−inφ1

[ ∫ 2π

0
dτ

1

4k′2sin2
(

τ
2

)
+ q�E

2

−

∫ 2π

0
dτ

cos τ

4k′2sin2
(

τ
2

)
+ q�E

2

]
.

Solving the integral over φ1 and defining

A(k′) =
1

2

[ ∫ 2π

0
dτ

1

4k′2sin2
(

τ
2

)
+ q�E

2

−

∫ 2π

0
dτ

cos τ

4k′2sin2
(

τ
2

)
+ q�E

2

]
,

we obtain

Qx
a(l, k) ∝ σ

∑

k′,n

c0(k′; a)dn
∗lk (k′; a)k′3A(k′)[δn,1 + δn,−1].

(B1)

From which it is easy to understand that only the n = ±1
components of the back-propagated Bessel beam effectively
contribute to Qx

a(l, k).
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