001     878151
005     20210130005418.0
024 7 _ |a 10.1039/C9NA00279K
|2 doi
024 7 _ |a 2128/25439
|2 Handle
024 7 _ |a altmetric:61014800
|2 altmetric
024 7 _ |a WOS:000478576700032
|2 WOS
037 _ _ |a FZJ-2020-02664
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Scarfiello, Riccardo
|0 0000-0002-6277-1252
|b 0
|e Corresponding author
245 _ _ |a Mechanistic insight into the formation of colloidal WS 2 nanoflakes in hot alkylamine media
260 _ _ |a Cambridge
|c 2019
|b Royal Society of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1596550396_9645
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Developing convenient and reliable synthetic methodologies for solution processable 2D layered ultrathin nanostructures with lateral size control is one of the major challenges for practical applications. In this study, a rational understanding a long-chain amphiphilic surfactant assisted non-hydrolytic synthesis that is able to generate dimension-controllable 2D-WS2 nanocrystal flakes in a single-step protocol is proposed. The evolution of the starting soft organic–inorganic lamellar template into ultrathin few-layer 2D-WS2 nanostructures with lateral size modulation over a range between 3 and 30 nm is monitored. The initial formation of WS2 nanoseeds occurs in a self-assembled sacrificial precursor source, acting as a template, where larger two-dimensional nanostructures can grow without undergoing significant thickness variation. Overall, the chemical nature and steric hindrance of the alkylamines are essential to modulate the reactivity of such WS2 nanoclusters, which correlate with the lateral size of the resulting nanoflakes
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
536 _ _ |a Q-SORT - QUANTUM SORTER (766970)
|0 G:(EU-Grant)766970
|c 766970
|f H2020-FETOPEN-1-2016-2017
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cesari, Andrea
|0 0000-0002-9927-0953
|b 1
700 1 _ |a Altamura, Davide
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Masi, Sofia
|0 0000-0002-7373-1627
|b 3
700 1 _ |a Nobile, Concetta
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Balzano, Federica
|0 0000-0001-6916-321X
|b 5
700 1 _ |a Giannini, Cinzia
|0 0000-0003-0983-2885
|b 6
700 1 _ |a Grillo, Vincenzo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Tavabi, Amir H.
|0 P:(DE-Juel1)157886
|b 8
|u fzj
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 9
|u fzj
700 1 _ |a Uccello-Barretta, Gloria
|0 0000-0001-6735-2711
|b 10
700 1 _ |a Cozzoli, P. Davide
|0 0000-0001-8037-6937
|b 11
700 1 _ |a Rizzo, Aurora
|0 0000-0002-4570-7777
|b 12
773 _ _ |a 10.1039/C9NA00279K
|g Vol. 1, no. 7, p. 2772 - 2782
|0 PERI:(DE-600)2942874-9
|n 7
|p 2772 - 2782
|t Nanoscale advances
|v 1
|y 2019
|x 2516-0230
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878151/files/c9na00279k.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878151/files/c9na00279k.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878151
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0002-9927-0953
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-7373-1627
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0001-6916-321X
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)157886
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-14
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21