000878152 001__ 878152
000878152 005__ 20210130005419.0
000878152 0247_ $$2doi$$a10.1038/s41598-019-45192-1
000878152 0247_ $$2Handle$$a2128/25445
000878152 0247_ $$2altmetric$$aaltmetric:62603745
000878152 0247_ $$2pmid$$apmid:31227748
000878152 0247_ $$2WOS$$aWOS:000472477300001
000878152 037__ $$aFZJ-2020-02665
000878152 041__ $$aEnglish
000878152 082__ $$a600
000878152 1001_ $$0P:(DE-HGF)0$$aMastria, Rosanna$$b0
000878152 245__ $$aIn-plane Aligned Colloidal 2D WS2 Nanoflakes for Solution-Processable Thin Films with High Planar Conductivity
000878152 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000878152 3367_ $$2DRIVER$$aarticle
000878152 3367_ $$2DataCite$$aOutput Types/Journal article
000878152 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596696571_32467
000878152 3367_ $$2BibTeX$$aARTICLE
000878152 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878152 3367_ $$00$$2EndNote$$aJournal Article
000878152 520__ $$aTwo-dimensional transition-metal dichalcolgenides (2D-TMDs) are among the most intriguing materials for next-generation electronic and optoelectronic devices. Albeit still at the embryonic stage, building thin films by manipulating and stacking preformed 2D nanosheets is now emerging as a practical and cost-effective bottom-up paradigm to obtain excellent electrical properties over large areas. Herein, we exploit the ultrathin morphology and outstanding solution stability of 2D WS2 colloidal nanocrystals to make thin films of TMDs assembled on a millimetre scale by a layer-by-layer deposition approach. We found that a room-temperature surface treatment with a superacid, performed with the precise scope of removing the native insulating surfactants, promotes in-plane assembly of the colloidal WS2 nanoflakes into stacks parallel to the substrate, along with healing of sulphur vacancies in the lattice that are detrimental to electrical conductivity. The as-obtained 2D WS2 thin films, characterized by a smooth and compact morphology, feature a high planar conductivity of up to 1 μS, comparable to the values reported for epitaxially grown WS2 monolayers, and enable photocurrent generation upon light irradiation over a wide range of visible to near-infrared frequencies.
000878152 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878152 536__ $$0G:(EU-Grant)766970$$aQ-SORT - QUANTUM SORTER (766970)$$c766970$$fH2020-FETOPEN-1-2016-2017$$x1
000878152 588__ $$aDataset connected to CrossRef
000878152 7001_ $$0P:(DE-HGF)0$$aScarfiello, Riccardo$$b1
000878152 7001_ $$00000-0003-2597-4883$$aAltamura, Davide$$b2
000878152 7001_ $$00000-0003-0983-2885$$aGiannini, Cinzia$$b3
000878152 7001_ $$0P:(DE-HGF)0$$aLiscio, Andrea$$b4
000878152 7001_ $$00000-0002-7614-7100$$aKovtun, Alessandro$$b5
000878152 7001_ $$0P:(DE-HGF)0$$aBianco, Giuseppe Valerio$$b6
000878152 7001_ $$0P:(DE-HGF)0$$aBruno, Giovanni$$b7
000878152 7001_ $$0P:(DE-HGF)0$$aGrillo, Vincenzo$$b8
000878152 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir H.$$b9
000878152 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b10
000878152 7001_ $$0P:(DE-HGF)0$$aNobile, Concetta$$b11
000878152 7001_ $$0P:(DE-HGF)0$$aCola, Adriano$$b12
000878152 7001_ $$00000-0001-8037-6937$$aCozzoli, P. Davide$$b13
000878152 7001_ $$00000-0003-3247-8669$$aGambino, Salvatore$$b14$$eCorresponding author
000878152 7001_ $$00000-0002-4570-7777$$aRizzo, Aurora$$b15$$eCorresponding author
000878152 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-45192-1$$gVol. 9, no. 1, p. 9002$$n1$$p9002$$tScientific reports$$v9$$x2045-2322$$y2019
000878152 8564_ $$uhttps://juser.fz-juelich.de/record/878152/files/s41598-019-45192-1.pdf$$yOpenAccess
000878152 8564_ $$uhttps://juser.fz-juelich.de/record/878152/files/s41598-019-45192-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878152 909CO $$ooai:juser.fz-juelich.de:878152$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000878152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b9$$kFZJ
000878152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b10$$kFZJ
000878152 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878152 9141_ $$y2020
000878152 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-16
000878152 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2018$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878152 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-16
000878152 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878152 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000878152 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-16
000878152 920__ $$lyes
000878152 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878152 980__ $$ajournal
000878152 980__ $$aVDB
000878152 980__ $$aUNRESTRICTED
000878152 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878152 9801_ $$aFullTexts