Home > Publications database > Electron-Beam Shaping in the Transmission Electron Microscope: Control of Electron-Beam Propagation Along Atomic Columns > print |
001 | 878153 | ||
005 | 20210130005420.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevApplied.11.044072 |2 doi |
024 | 7 | _ | |a 2331-7019 |2 ISSN |
024 | 7 | _ | |a 2331-7043 |2 ISSN |
024 | 7 | _ | |a 2128/25430 |2 Handle |
024 | 7 | _ | |a altmetric:46845303 |2 altmetric |
024 | 7 | _ | |a WOS:000465185900006 |2 WOS |
037 | _ | _ | |a FZJ-2020-02666 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Rotunno, E. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Electron-Beam Shaping in the Transmission Electron Microscope: Control of Electron-Beam Propagation Along Atomic Columns |
260 | _ | _ | |a College Park, Md. [u.a.] |c 2019 |b American Physical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1602162916_20222 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We present a detailed analysis of the propagation of high-energy electron beams that have different shapes in a crystal of [100]-oriented zincblende GaN. Our study primarily focuses on Bessel beams and makes use of reformulated Bloch wave and multislice simulations. As a result of the simplicity of the momentum spectrum of a Bessel beam and the symmetry of the crystal, its propagation in the material can be described in a free-space representation, providing a deeper understanding of channeling phenomena and of probe intensity oscillation in the propagation direction. We also consider aperture-limited and Gaussian beams. The latter probes are shown to be optimal for coupling to 1s Bloch states and achieving minimal spreading along atomic columns. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
536 | _ | _ | |a Q-SORT - QUANTUM SORTER (766970) |0 G:(EU-Grant)766970 |c 766970 |f H2020-FETOPEN-1-2016-2017 |x 1 |
536 | _ | _ | |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717) |0 G:(EU-Grant)823717 |c 823717 |f H2020-INFRAIA-2018-1 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Tavabi, A. H. |0 P:(DE-Juel1)157886 |b 1 |
700 | 1 | _ | |a Yucelen, E. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Frabboni, S. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Dunin-Borkowski, Rafal |0 P:(DE-Juel1)144121 |b 4 |
700 | 1 | _ | |a Karimi, E. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a McMorran, B. J. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Grillo, V. |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1103/PhysRevApplied.11.044072 |g Vol. 11, no. 4, p. 044072 |0 PERI:(DE-600)2760310-6 |n 4 |p 044072 |t Physical review applied |v 11 |y 2019 |x 2331-7019 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878153/files/PhysRevApplied.11.044072.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878153/files/PhysRevApplied.11.044072.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:878153 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)157886 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)144121 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-17 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV APPL : 2018 |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-17 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-17 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-17 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-17 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|