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We present a detailed analysis of the propagation of high-energy electron beams that have different
shapes in a crystal of [100]-oriented zincblende GaN. Our study primarily focuses on Bessel beams and
makes use of reformulated Bloch wave and multislice simulations. As a result of the simplicity of the
momentum spectrum of a Bessel beam and the symmetry of the crystal, its propagation in the material
can be described in a free-space representation, providing a deeper understanding of channeling phenom-
ena and of probe intensity oscillation in the propagation direction. We also consider aperture-limited and
Gaussian beams. The latter probes are shown to be optimal for coupling to 1s Bloch states and achieving

minimal spreading along atomic columns.
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I. INTRODUCTION

Most electron beams that are currently used in TEM are
formed using a hard aperture whose radius is chosen to
limit the effects of condenser lens aberrations [1,2]. The
shape of the electron probe is then approximately an Airy
disc, with ripples that are only visible when the spatial
coherence is high (or for “unconventional” defocus values
or aperture sizes) [3]. The introduction of electron vor-
tex beams and holographic electron beam shaping [4,5]
now allows electron probes with others wavefronts to be
engineered. Vortex beams are characterized by staircase
wavefronts and phase singularities with zeros of intensity
at their centers. In spite of their exotic shapes, the radial
profiles of vortex probes, which can be used for the acqui-
sition of atomic-resolution images [6], are determined by
simple hard cut offs. Recently, the use of more complicated
nanofabrication schemes has allowed holographic masks
to be used to manipulate the amplitudes and phases of elec-
tron probes [7—11], extending the range of beam shapes
that can be engineered. For example, a Bessel beam can
be formed by using a narrow ring in the aperture plane
in a similar manner to the use of hollow cone illumina-
tion [12—16], while a holographic mask is currently the
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best approach for producing either a narrow radial momen-
tum distribution or a nonvanishing topological charge [8].
Bessel beams are promising for high-resolution imaging
and tomography, as well as for creating vortex beams
with desired shapes. They allow the radial function of the
electron probe to be manipulated, thereby affecting image
resolution. In particular, they have narrower central peaks
than conventional beams for the same maximum conver-
gence semiangle [17]. They are also propagation invariant
in vacuum and are “self-healing,” meaning that they are
insensitive to partial obstruction by opaque objects. The
natural question arises as to whether they are insensitive
to propagation inside a crystal that can be considered as a
phase and amplitude object. In this context, it is relevant
that Bessel beam propagation in vacuum and channeling
in a material can both be represented by solutions of the
paraxial Schrédinger equation, with separation of variables
between in-plane and out-of-plane components.

Here, we study the propagation of Bessel and other
electron beams by reformulating Bloch wave simulations
based on the concept of transverse energy as the only quan-
tum number. This approach has the advantage that it is
related less strongly to probe decomposition into plane
waves, allowing the new eigenstates to directly match the
overall probe shape. Bloch wave analysis has previously
been carried out for aperture-limited vortex beams [18,19].
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In contrast, a Bessel beam is characterized by a single
value (or a narrow distribution) of the modulus of the trans-
verse momentum. In high-symmetry conditions (e.g., with
the probe exactly on an atomic column in a material that
has a large separation between columns of light atoms),
the influence of the azimuthal coordinate is small, simpli-
fying the treatment of Bloch wave propagation. We choose
zincblende GaN viewed along the [100] zone axis as a
model material as a result of its simple symmetry, even
though this allotrope of GaN is not favored thermodynam-
ically. In this orientation, the weak potentials of the N
atomic columns can be neglected when compared to those
of the well-separated Ga columns. To a good approxima-
tion, the Ga columns produce an azimuthally symmetrical
potential. We develop formalism for this simplified situa-
tion and consider the didactic case of the Oth-order Bessel
beam in order to understand the “pendellésung” oscilla-
tion, including a damping effect that is not associated with
inelastic scattering. A coupling of this effect with the dis-
crete momentum spectrum of the Bessel beam is shown to
result in a strong selection of excited Bloch states, provid-
ing the possibility to engineer the pendelldsung oscillation
of the probe in a STEM experiment. Shaping of the beam
into an approximate ls state is found to result in the
minimization of diffraction-pendellésung effects in both
aperture-limited and Bessel probes. We highlight the wide
variety of behaviors with sample thickness that can be
tailored by beam shaping.

II. GENERAL ASPECTS OF BEAM
PROPAGATION

Although a full description of electron-beam propaga-
tion inside a material is complex, we base our discussion
here on a simplified approach. In general, an electron beam
that enters a sample can be described using a sum over
different Bloch waves b7 (7, z) = b (7) exp(iK P z), which
are associated with quantum numbers » and k, where 7 is
the band and £ is the two-dimensional pseudo-momentum
confined to the first Brillouin zone, similar to the solid state
description of conduction electrons [20].

In the case of a convergent probe in scanning TEM
(STEM), each partial plane wave in the illumination cone
gives rise to its own set of Bloch waves. The overall wave
function can be expressed in the form [21]

U (F,z) = / Ze””_‘A(fg)bg(?) exp(iK"Mz)dK,, (1)

where K| is the transverse component of the momentum
of the incident electron beam, A(K ) describes the aper-
ture cut off (including any complex amplitude modulation
introduced by a probe-forming hologram) and the effect of
lens aberrations, and £ is the complex excitation for each
Bloch state bg (r,2).

For many practical purposes, an electron beam that is
located on an atomic column can be described simply in
terms of its two most important components:

(1) BEB(I_’,Z)I Single-column localized states that can
be treated as being independent of the presence of other
columns. This description is equivalent to the “tight bind-
ing approximation” in solids. The most fundamental exam-
ples are 1s ground states, which are referred to here as
B}{S(?, 2).

(2) B{"(7,2): Asymptotically free states, whose propa-
gation is approximately independent of the presence of the
lattice potential.

These components can be described mathematically using
a superposition of Bloch states. For the bound states, the
“tight binding” approximation permits the description of
each state with n =1 and different values of k in the form
b (r,z) & b (r)exp(ikr)exp(iK'z).

The values of K™, that is, the velocities of phase evo-
lution along z, can be calculated by diagonalizing the
Schrodinger equation in the Bloch basis. Depending on the
chosen formalism, K can also be related to the transverse
energy using the expression

2
Er= k2 - k0P, 2
2m ‘

where K is the total momentum. For simplicity, the trans-
verse energy is expressed below in the form (K™* — K2),
following the approach used by Metherell [22], with the
constants in Eq. (2) equal to unity. The bound states then all
have positive transverse energy, while unbound states have
negative values. K" can also be related to the “anpassung”
parameter, which is the eigenvalue of the simplified Bloch
diagonalization problem

=1k, (3)
A

In Egs. (2) and (3), E is the beam energy after subtraction
of the mean inner potential contribution, A is the electron
wavelength in vacuum, 7 is the correction to the electron
wavelength due to the mean inner potential, and m is the
relativistic electron mass. Based on these relationships, we
refer equivalently to K™, anpassung, or transverse energy.
The tightly bound wave function component for the ls
state then takes the form

BE(F,z) = / e DA )b 7. 2) exp(K D z)dK |

~ exp(iKz) [ &"FA(K )" (Pexp(iki)dK .
(4)

The in-plane description of the Bloch state in the form
b (#)exp(ik - ) implies that there is a single (typically
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Gaussian-shaped) mode b () that is independent of k,
whereas the k& dependence of the full Bloch wave b}(s (r,2)

is confined to the phase factor exp(ikr). This approxima-
tion is similar to the k- p model in the solid-state theory of
Bloch electrons [23].

For nearly isolated Ga columns with only a small
azimuthal dependence of the excitation factors &'

BIE(F,z) = / "R AR ) exp(KPERdR,  (5)

and

| n? n 13

This is the so-called s state model [24,25], which is used
successfully to describe dynamical scattering of electrons
in a thin specimen and many channeling-related phenom-
ena on the assumption that the crystalline potential can
be neglected compared to the transverse energies of the
states. This simplified approach can be used to qualita-
tively describe different kinds of beam propagation that
result from beating between the two components.

In order to obtain a more accurate, quantitative descrip-
tion of beam propagation, a complete Bloch wave treat-
ment is needed. However, Bloch wave calculations return
hundreds of thousands of coefficients, which cannot be
interpreted readily but must be summed together to obtain
a point-to-point representation of the wave function.

Here, we propose a simpler approach for studying beam
propagation in detail, and analyze the traverse energy spec-
trum of the excited states. Instead of using the Bloch
state quantum numbers n, k where » is the only discrete
variable, we label the states based on their transverse
energy. States with different values of #n and & are grouped
together depending on their transverse energy E to form
new states [26,27].

BE(7,z) = exp(iKEz) / 3 e AR LB (F 2)
x 8(E"* EYdK | . (7)

Propagation inside a crystal at point 7 can be regarded as
a consequence of the z dependent interference of states
BE(7,z) with intensity |Bf(7,z)|>. For many purposes,
we then consider the unit-cell-averaged intensity /(E) =
[ |BE (7, 2)|dr.

Bloch wave calculations and their spectral description
are performed using our custom software B_WISE [26].
Since Bloch wave algorithms only return parameters and
excitations for plane waves, our software samples a num-
ber of points in the probe and sums the results, taking into

account the appropriate phase. For simplicity, we consider
a perfectly aberration-corrected microscope, in which all
residual aberrations are zero. The software can also pro-
duce images that represent wave functions of these energy
defined states.

Examination of the intensity spectrum as a function of
a state’s energy provides a straightforward approach to
understand the propagation of a beam. Bound states appear
in the spectrum as sharp peaks, while HE states form bands
whose average value provides the mean velocity of the
group, as explained below. It is also possible to explain
pendelldsung oscillations by evaluating the dephasing of
different Bloch waves. Considering a simple distribution
P(Ak) of continuum states, the amplitude of the wave
function at a point (x, y) can be expressed in the form

1 [t o .
Ve = / [P(Ak)eFeh — ko2 1d Ak, (8)

The actual wave function is
U(z) = P(z)e + 07, 9)

where P(z) is the Fourier transform of the distribution
P(Ak). The intensity then takes the form

14 2PC) sin((k — ko)2),

I(z) = (i)(z) (10)

where P(z) describes damping of the pendellésung oscilla-
tion with depth. The damping of the oscillation is not due
to inelastic effects. If the momenta along z are distributed,
for example, according to a Gaussian profile of width &%,
then the oscillation is damped over a distance §z = 27 /§k.

II1. RESULTS

A. Conventional aperture-limited probe

The description of a conventional (aperture-limited)
probe is straightforward. Since HE states are nearly free,
they behave as a probe would do in vacuum. BYE (7, z)states
form a concentrated waist in the sample at a depth cor-
responding to the in-focus condition and then broaden,
for geometric reasons, to a radius R =zo, where « is the
convergence semiangle. Alternatively, the component HE
states can be regarded as getting out-of-phase before and
after the focus condition.

Since the B}(S (7, z) overall phase exp(iK,z) evolves with
z faster than that of all of the B (7, z) states, the two states
give rise to characteristic beating with frequency

K — Kyt (11)
where K[IF is the average propagation velocity over all
HE states. However, since the BYE(r,z) states get out
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FIG. 1. (a) Calculated image
of an electron probe formed by
a 21-mrad aperture at 300 keV.
(b) Multislice simulation of its
evolution along a Ga column in
a [100]-oriented GaN crystal. (c)
Intensity line profile of (b) plotted
as a function of depth (solid black
line), shown alongside a damping
profile (red dashed line) estimated
according Eq. (8). (d) Transverse

Intensity (arb. units)

Intensity (arb. units)

energy spectrum of the excited
Bloch state intensities.

10 15 20 25 -150
Thickness (nm)

30 200

of phase with each other, the oscillation is damped.
This point is worth emphasizing, since it is commonly
believed [28,29] that damping of oscillations is due to
absorption of 1s states, which is not considered here in
Bloch wave calculations (for multislice calculation below
instead we accounted for it through the “frozen lattice”
approximation).

Figure 1 shows the result of a multislice simulation per-
formed using a routine in the STEMCELL software suite [30]
derived from the Kirkland multislice code [31]. The results
are obtained for a [100]-oriented zincblende GaN column
for a probe formed by a 21-mrad aperture at 300 keV

L
-100 =50 0 50

Transverse Energy (nm_z)

[Fig. 1(a)] located on a Ga column. The probe intensity
along the column is shown in Fig. 1(b). A characteristic
channeling oscillation is visible when the intensity is plot-
ted as a function of depth in Fig. 1(c). The traverse energy
spectrum of the excited Bloch state intensities, which is
calculated by sampling the probe over 1793 reciprocal
points, is shown in Fig. 1(d). It is dominated by a broad
band that extends roughly from —10 to —130 nm™2, cor-
responding to eigenvalues of the BYE(7,z) states. In the
positive transverse energy part of the spectrum, a sharp
peak at approximately 52 nm~2 is ascribed to the tightly
bound, nondispersive ls state. The 1s state intensity is

FIG. 2. (a) Calculated image
of a Bessel probe formed by
a 20-22-mrad ring aperture at
300 keV. (b) Multislice simula-
tion of its evolution along a Ga
column in a [100]-oriented GaN
crystal. (c) Intensity line profile
of (b) plotted as a function of
depth (solid black line), shown
alongside a damping function (red
dashed curve) calculated accord-

Intensity (arb. units)
Intensity (arb. units)

ing to Eq. (8). (d) Transverse
energy spectrum of the excited
Bloch state intensities.

10 15 20 25

Thickness (nm)

30 -200

-150
Transverse Energy (nm'z)

-100 =50 0 50
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approximately one order of magnitude higher than that of
any other Bloch state, as expected for strong channeling in
a crystalline solid oriented along a major zone axis. Char-
acteristic channeling oscillations arise as a consequence
of interference between the ls Bloch states with each of
the BYE(7,z) states. The average transverse energy of the
BYE(7,z) states is approximately —80 nm~2, which can
be translated directly into a group velocity using Egs. (3)
and (6). Equation (11) gives the frequency of the beating.
The periodicity is estimated to be approximately 8 nm, in
good agreement with the multislice calculation (7.2 nm).
The discrepancy (approximately 10%) results from damp-
ing due to thermal vibrations. Thermal vibrations of atoms
in the lattice are responsible for absorption of the 1s state
(dechanneling), which further attenuates the beating peri-
odicity of the probe. Thermal motion is naturally included
in multislice calculations, but can only be accounted for in
Bloch wave calculations by using perturbative treatments
or by introducing an absorptive part in the potential. We
intentionally neglect any absorptive potential in our Bloch
wave calculations in order to evaluate the damping pro-
duced by the simple dephasing of high-energy, unbound
Bloch states.

As a result of the large spread in propagation velocity,
the BYF(7,z) wave packet disperses rapidly, and a damp-
ing of the oscillation can be expected, as described by

(@) (b)

Eq. (10). For a probe with larger convergence, the band
is broader and greater damping results, as expected from
the fact that the BIIgE (r,z) states spread out at a faster rate.
The calculated damping profile is shown as a red dashed
line in Fig. 1(c) and is in good agreement with the result of
the multislice calculation.

B. Bessel probe

The general form of a time-independent Bessel beam
solution of order # is simply

W (p,p,z;1) = Ju(ky, p)e™® e, (12)

where J, is an nth-order Bessel function of the first kind,
n is an integer, the wave function’s transverse and longi-
tudinal wave vector components k, and k;, respectively,
are related to its de Broglie wavelength A by the rela-
tion k% = kf) + kz2 = 2mw/h = 2w /))?, k is the modulus
of the electron wavevector, and # is the reduced Planck
constant. Here, we consider only the case n = 0.

Bessel probes (like plane waves) have non-normalizable
intensities and can only be approximated by truncated
Bessel beams that correspond to finite annulus sizes for
hollow cone illumination. Here, the truncation is chosen
so that most of the wave function intensity is within a sin-
gle unit cell [Fig. 2(a)]. In this approximation, a Bessel

FIG. 3. Multislice simulation of
a Bessel probe formed by a
20-22-mrad ring during its evolu-
tion in the specimen at depths of
(a) 6 and (b) 12 nm. Bloch wave
calculations of the wavefuntions
corresponding to (c) the ls state
and (d) a high-energy unbound
state with a transverse energy of
—110 nm—2.
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probe propagating in vacuum has a long range of defocus
for which it remains localized [32]. Similar to the vacuum
case, we can assume that the BEE (7,z) component of the
beam does not spread along Z, as discussed in detail below.

Multislice calculations of Bessel beam propagation,
which are shown in Figs. 2(b) and 2(c), display a much
clearer oscillation compared to a conventional probe
(Fig. 1), with nearly no damping of the oscillation in the
first 30 nm of propagation. The oscillation frequency is
similar, with small differences resulting from a change
in the barycenter of the HE state distribution in the two
cases. The intensity spectrum shown in Fig. 2(d), which
is calculated by sampling the probe over 508 reciprocal
points, contains a relatively narrow peak in the negative
transverse energy régime at approximately —115 nm~2.
For an isolated column, the spectrum should be perfectly
monochromatic. However, a small break in azimuthal sym-
metry due to the presence of N atomic columns leads to a
spread in transverse energy. Nevertheless, the approximate

azimuthal symmetry allows for a clear interpretation of
the spectrum, which would not work for more compli-
cated symmetries or for a small misplacement of the probe.
The damping profile, which is calculated using Eq. (10), is
shown in Fig. 2(c) as a red dashed line. The simple shape
of the HE state band, which can be approximated as a
Gaussian distribution, ensures nearly perfect quantitative
agreement with the multislice calculation.

Both of these arguments can explain the results of the
multislice calculations. In general, the behavior of a Bessel
probe along an atomic column in a crystal is similar to
propagation in vacuum, with the addition of beating with
highly localized 1s states. The persistence of the oscillation
is a consequence of the nondiffractive nature of a Bessel
beam in vacuum and, by extension, of unbound states in
crystals.

When considering the real space shapes of the BYE (7, z)
and B} (7,z) components, an interesting detail becomes
apparent: BiF(7,z) is a Bessel function of the form

Intensity (arb. units)

15

; FIG. 4. (a) Multislice simula-
(b) tions of propagation along a Ga
column in a [100]-oriented GaN
crystal of a Bessel probe formed
by (a) a 20-22-mrad ring aper-
ture and (b) its intensity line pro-
file as a function of depth. (c) A
16—18-mrad ring aperture and (d)

nanometers

o
o

10 15 20 25 30 e o
its intensity line profile as a func-
tion of depth. (e) A 14—16-mrad

Thickness (nm)
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ring aperture and (f) its intensity
line profile as a function of depth.
(g) A 20-22-mrad ring aperture
with 10 nm of defocus and (h) its
intensity line profile as a function
of depth, with the line profile from
(b) shown in red for comparison.
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BYE(F, z) = Jo(kone, 7) exp(iKHEz). However, BJ (7, z) can
also be approximated, according to Eq. (5), by the Bessel-
Gauss function BY (7, z) = b () Jo(kp17) exp(iK}z). The
entire beam 1is, therefore, a superposition of two beating
Bessel functions. In a multislice simulation, this point can
be highlighted by calculating the probe intensity at oscilla-
tion maxima, as demonstrated in Figs. 3(a) and 3(b), which
show the formation of two sets of rings with different radii.

The same result is obtained from the Bloch wave cal-
culations. In Figs. 3(c) and 3(d), we report partial wave
functions corresponding to the 1s state and to the unbound
state with transverse energy —110 nm~2. The Bessel nature
of the two states is also clearly visible in this case.

IV. DISCUSSION

A. Engineering the channeling

Having described the properties of Bessel beams, their
dependence on chosen parameters can be established. In
Fig. 4, multislice simulations of the propagation of Bessel
beams are reported for convergence semiangles of a)
2022 mrad, c¢) 16—18 mrad, and e¢) 14—16 mrad. By vary-
ing the convergence semiangle, it is possible to vary the
frequency of beating along an atomic column. Conversely,
if the defocus at the entrance of the sample is changed,
no shift of the beating fringes is observed. Figures 4(g)
and 4(h) show that the application of 10 nm of defocus
to a 2022-mrad probe is almost negligible. In Fig. 4(h),
a profile of a probe without defocus is shown in red. This
behavior is explained by the discussion above and by the
properties of a Bessel beam in vacuum.

Intelligent use of this behavior can be made in connec-
tion with a preceding paper [33], in which we demon-
strated that probes with different channeling behaviors can

15

| I W (S ———— N—
nanometers

be used to provide three-dimensional information about
guest atomic species in a lattice. The contribution of an
atom located at depth z to the total image intensity is the
product of the probe current at that position j(z) and the
atomic scattering cross section. The image contrast can
be related to the channeling current j (z) and the distribu-
tion of guest species in the column a(z) through the simple
relation

C= )Y j@a).

i atoms

(13)

In the specific case of a Bessel beam, the channeling cur-
rents j (z) are trigonometric functions, and imaging using
different convergence semiangles produces a harmonic
decomposition of the unknown function a(z).

B. Optimal channeling probe

Based on the above considerations, we determine an
ideal probe that has the same role in a material as a Bessel
beam has in vacuum, that is, that propagates in a crystal
without diffracting. This problem is equivalent to deter-
mining solutions of the wave equation in the material. The
answer is well known in microscopy as a two-dimensional
Bloch wave solution. Whereas it is complicated to produce
a single Bloch wave of arbitrary order that would be delo-
calized, it is, in principle, possible to produce a beam that
resembles a ls state by using beam synthesis techniques.
To a large approximation, such a beam can be consid-
ered to be a Gaussian beam, as shown in Fig. 5(a). In
this case, the beam intensity has a full width at half maxi-
mum of 0.35 A [26], which is close to current instrumental
limits [34].

FIG. 5. (a) Simulated image of
a Gaussian probe at 300 keV. (b)
Its evolution along a Ga column
in a [100]-oriented GaN crystal.
(c) Simulated image of the Gaus-
sian probe at the exit surface after
propagation in the specimen. (d)
Intensity line profile plotted as a

20 25 function of depth.

(d)

Intensity (arb. units)

0 5 10

15 20 25 30

Thickness (nm)
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Figure 5(b) shows a simulation of the propagation of
such a probe in a GaN cell, while its depth dependence
is shown in Fig. 5(d). The Gaussian probe is still damped,
but there is practically no sign of beating between states.
Figure 5(c) shows, on a logarithmic scale, that at the end
of the propagation, the probe shows very weak signs of
crosstalk between adjacent columns.

Such a Gaussian probe appears to be the best suited
probe for quantitative, single-column Z contrast STEM
experiments. It is well known that column-by-column
quantitative analysis is strongly influenced by the propaga-
tion of a probe in the sample [35,36]. As a consequence of
channeling, the contrast of an atom depends strongly on its
depth [37], making quantitative analyses of thin samples
unreliable [38]. A Gaussian probe that fits the 1s state of
an atomic column can propagate freely, completely avoid-
ing this limitation as shown in Fig. 6, as well as reducing
crosstalk to neighboring columns.

As a case study, we consider the imaging of Au impu-
rities in a Si crystal [39,40]. We prepare a 20-nm thick Si
(100) supercell containing three Au atoms. The first Au
atom is placed on top of a Si column, and is labeled “1” in
Fig. 6(a). The other two Au atoms are placed in a column
labeled “2,” one in the middle of the cell (10 nm below the
entrance surface) and the other close to the exit surface.
We perform multislice calculations in the “frozen lattice”
approximation to simulate an experiment conducted using
a conventional STEM probe formed using a 20-mrad hard
aperture, as shown in Fig. 6(b), as well as a Gaussian probe
tailored to the 1s state of Si (Supplemental Material S4
[26]), as shown in Fig. 6(c). The simulated images are the
result of integration over 20 independent thermal “frozen
lattice” configurations in order to have a truthful descrip-
tion of the STEM experiment and, in the process, minimize
any numerical error.

As a result of the rapid damping of a conventional probe
in Fig. 6(b), column (1) containing a single Au atom on top
appears brighter than column (2), which contains two Au
atoms deeper in the specimen, demonstrating a top-bottom
effect. In contrast, for the simulation performed using a
Gaussian probe in Fig. 6(c), the high angle annular dark
field intensity is proportional to the chemical composition

.'

FIG. 6. (a) Atomic model of Si
containing one Au atom on top
of column “1” and two Au atoms
in the center and at the bottom
of column “2.” (b),(c) Multislice
simulation performed using a con-
ventional STEM probe formed by
(b) a 20-mrad hard aperture and
(c) a Gaussian beam tailored to the
Si 1s state (beam waist 0.44 A).

of the specimen, with the column that contains two Au
atoms appearing brighter than the column containing only
one Au atom. These results, together with the previous
considerations, are of great importance for the develop-
ment of more reliable quantitative electron microscopy and
it is potentially a source of great application.

V. CONCLUSIONS

We use Bloch wave and multislice simulations to study
the behavior of Bessel and optimal Gaussian electron
beams in a material. We consider [100]-oriented GaN with
the probe localized on Ga atomic columns. For even states,
the probe can be regarded as a superposition of a few rel-
evant states. For example, a Oth-order Bessel probe can be
represented as a superposition of two Bessel beams with
different z velocities. We compare a Bessel beam with a
normal “aperture-limited” probe in order to understand the
dynamics of the “pendellosung” oscillation. The observed
damping of channeling is due to dispersion of the non-
bound states rather than absorption of the 1s states. We
also compare our results with those for a Gaussian probe
that is optimal for channeling and is of the same size as
the 1s Bloch wave in the material. This is the only probe
that shows no oscillation in its channeling behavior and
is the best-suited probe for quantitative, single-column Z
contrast STEM experiments.
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