001     878154
005     20230217124413.0
024 7 _ |a 10.1103/PhysRevA.99.023628
|2 doi
024 7 _ |a 0556-2791
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1538-4446
|2 ISSN
024 7 _ |a 2469-9926
|2 ISSN
024 7 _ |a 2469-9934
|2 ISSN
024 7 _ |a 2469-9942
|2 ISSN
024 7 _ |a 2128/25431
|2 Handle
024 7 _ |a altmetric:48896059
|2 altmetric
024 7 _ |a WOS:000459902500005
|2 WOS
037 _ _ |a FZJ-2020-02667
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Larocque, Hugo
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Structured quantum projectiles
260 _ _ |a Woodbury, NY
|c 2019
|b Inst.
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2019-02-27
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2019-02-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1596525246_9645
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Matter wave interferometry is becoming an increasingly important technique in quantum metrology. However, unlike its photonic counterpart, this technique relies on the interference of particles possessing a nonzero rest mass and an electric charge. Matter waves can therefore experience alterations in their wavelike features while propagating through uniform fields to which a linear potential can be attributed, e.g., the Newtonian gravitational potential. Here, we derive the propagation kernel attributed to matter waves within such a potential. This kernel thereafter allows us to provide analytical formulations for structured matter waves subjected to a linear potential. Our formulations are in agreement with both the classical dynamics attributed to such waves and with previous interferometry experiments. Eigenbasis representations of structured matter waves are also introduced along with their application to enhanced interferometric measurements. Our results are not only relevant to matter wave interferometry, but also emphasize its fundamental differences with respect to photonic interferometry.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
536 _ _ |a Q-SORT - QUANTUM SORTER (766970)
|0 G:(EU-Grant)766970
|c 766970
|f H2020-FETOPEN-1-2016-2017
|x 1
542 _ _ |i 2019-02-27
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fickler, Robert
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Cohen, Eliahu
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Grillo, Vincenzo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 4
|u fzj
700 1 _ |a Leuchs, Gerd
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Karimi, Ebrahim
|0 P:(DE-HGF)0
|b 6
773 1 8 |a 10.1103/physreva.99.023628
|b American Physical Society (APS)
|d 2019-02-27
|n 2
|p 023628
|3 journal-article
|2 Crossref
|t Physical Review A
|v 99
|y 2019
|x 2469-9926
773 _ _ |a 10.1103/PhysRevA.99.023628
|g Vol. 99, no. 2, p. 023628
|0 PERI:(DE-600)2844156-4
|n 2
|p 023628
|t Physical review / A
|v 99
|y 2019
|x 2469-9926
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878154/files/PhysRevA.99.023628.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878154/files/PhysRevA.99.023628.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878154
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-24
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV A : 2018
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts
999 C 5 |a 10.1088/0034-4885/73/1/016101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/acprof:oso/9780198712510.001.0001
|1 H. Rauch
|2 Crossref
|9 -- missing cx lookup --
|y 2015
999 C 5 |a 10.1103/RevModPhys.81.1051
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.84.157
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys2863
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1208798
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys3404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/2040-8978/19/1/013001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physrep.2017.05.006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.89.035004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/00107514.2017.1418046
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.45.8185
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 S. Smith
|y 1988
|2 Crossref
|t Advances in Atomic and Molecular Physics
|o S. Smith Advances in Atomic and Molecular Physics 1988
999 C 5 |a 10.1103/PhysRevLett.99.190404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature15265
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1364/OE.24.022528
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.89.053616
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys4322
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 M. Zimmermann
|y 2018
|2 Crossref
|t Exploring the World with the Laser
|o M. Zimmermann Exploring the World with the Laser 2018
999 C 5 |a 10.1088/1751-8121/aa6cc5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 R. P. Feynman
|y 1965
|2 Crossref
|t Quantum Mechanics and Path Integrals
|o R. P. Feynman Quantum Mechanics and Path Integrals 1965
999 C 5 |a 10.1119/1.11855
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature11840
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/p709
|1 O. Vallée
|2 Crossref
|9 -- missing cx lookup --
|y 2010
999 C 5 |1 A. E. Siegman
|y 1986
|2 Crossref
|t Lasers
|o A. E. Siegman Lasers 1986
999 C 5 |a 10.1103/PhysRevLett.34.1472
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ppnp.2007.05.002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/14/5/055010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/00029890.1979.11994787
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1464-4258/10/3/035005
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21