000878184 001__ 878184
000878184 005__ 20230111074326.0
000878184 0247_ $$2doi$$a10.1080/07391102.2020.1776636
000878184 0247_ $$2ISSN$$a0008-7114
000878184 0247_ $$2ISSN$$a0739-1102
000878184 0247_ $$2ISSN$$a1538-0254
000878184 0247_ $$2ISSN$$a2165-5391
000878184 0247_ $$2Handle$$a2128/28359
000878184 0247_ $$2pmid$$a32490728
000878184 0247_ $$2WOS$$aWOS:000544776000001
000878184 037__ $$aFZJ-2020-02672
000878184 082__ $$a570
000878184 1001_ $$00000-0003-1140-5751$$aShvetsov, A. V.$$b0
000878184 245__ $$aCold and distant: structural features of the nucleoprotein complex of a cold-adapted influenza A virus strain
000878184 260__ $$aAbingdon [u.a.]$$bTaylor & Francis$$c2021
000878184 3367_ $$2DRIVER$$aarticle
000878184 3367_ $$2DataCite$$aOutput Types/Journal article
000878184 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627554293_29226
000878184 3367_ $$2BibTeX$$aARTICLE
000878184 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878184 3367_ $$00$$2EndNote$$aJournal Article
000878184 520__ $$aTwo influenza A nucleoprotein variants (wild-type: G102R; and mutant: G102R and E292G) were studied with regard to macro-molecular interactions in oligomeric form (24-mers). The E292G mutation has been previously shown to provide cold adaptation. Molecular dynamics simulations of these complexes and trajectory analysis showed that the most significant difference between the obtained models was distance between nucleoprotein complex strands. The isolated complexes of two ribonucleoprotein variants were characterized by transmission electron microscopy and differential scanning fluorimetry (DSF). Presence of the E292G substitution was shown by DSF to affect nucleoprotein complex melting temperature. In the filament interface peptide model, it was shown that the peptide corresponding in primary structure to the wild-type NP (SGYDFEREGYS) is prone to temperature-dependent self-association, unlike the peptide corresponding to E292G substitution (SGYDFGREGYS). It was also shown that the SGYDFEREGYS peptide is capable of interacting with a monomeric nucleoprotein (wild type); this interaction’s equilibrium dissociation constant is five orders of magnitude lower than for the SGYDFGREGYS peptide. Using small-angle neutron scattering (SANS), the supramolecular structures of isolated complexes of these proteins were studied at temperatures of 15, 32, and 37 °C. SANS data show that the structures of the studied complexes at elevated temperature differ from the rod-like particle model and react differently to temperature changes. The data suggest that the mechanism behind cold adaptation with E292G is associated with a weakening of the interaction between strands of the ribonucleoprotein complex and, as a result, the appearance of inter-chain interface flexibility necessary for complex function at low temperature.
000878184 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000878184 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000878184 588__ $$aDataset connected to CrossRef
000878184 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000878184 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000878184 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000878184 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000878184 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x1
000878184 7001_ $$00000-0003-4313-9953$$aLebedev, D. V.$$b1
000878184 7001_ $$00000-0003-2012-9461$$aZabrodskaya, Y. A.$$b2$$eCorresponding author
000878184 7001_ $$00000-0002-8646-6252$$aShaldzhyan, A. A.$$b3
000878184 7001_ $$00000-0003-1408-8413$$aEgorova, M. A.$$b4
000878184 7001_ $$0P:(DE-HGF)0$$aVinogradova, D. S.$$b5
000878184 7001_ $$00000-0003-0125-7150$$aKonevega, A. L.$$b6
000878184 7001_ $$00000-0003-2303-1144$$aGorshkov, A. N.$$b7
000878184 7001_ $$0P:(DE-HGF)0$$aRamsay, E. S.$$b8
000878184 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b9
000878184 7001_ $$00000-0003-0411-9896$$aSergeeva, M. V.$$b10
000878184 7001_ $$00000-0001-8196-3156$$aPlotnikova, M. A.$$b11
000878184 7001_ $$00000-0003-1733-1255$$aKomissarov, A. B.$$b12
000878184 7001_ $$00000-0003-2235-9658$$aTaraskin, A. S.$$b13
000878184 7001_ $$00000-0002-8710-6136$$aLebedev, K. I.$$b14
000878184 7001_ $$0P:(DE-HGF)0$$aGarmay, Yu. P.$$b15
000878184 7001_ $$0P:(DE-HGF)0$$aKuznetsov, V. V.$$b16
000878184 7001_ $$00000-0002-4593-1971$$aIsaev-Ivanov, V. V.$$b17
000878184 7001_ $$00000-0002-1391-7139$$aVasin, A. V.$$b18
000878184 7001_ $$00000-0002-1193-5907$$aTsybalova, L. M.$$b19
000878184 7001_ $$00000-0002-3670-8962$$aEgorov, V. V.$$b20
000878184 773__ $$0PERI:(DE-600)2085732-9$$a10.1080/07391102.2020.1776636$$gp. 1 - 10$$n12$$p4375-4384$$tJournal of biomolecular structure & dynamics$$v39$$x0739-1102$$y2021
000878184 8564_ $$uhttps://juser.fz-juelich.de/record/878184/files/847608.full.pdf$$yOpenAccess
000878184 8564_ $$uhttps://juser.fz-juelich.de/record/878184/files/NPcold-final.pdf$$yOpenAccess
000878184 909CO $$ooai:juser.fz-juelich.de:878184$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000878184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b9$$kFZJ
000878184 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000878184 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000878184 9141_ $$y2021
000878184 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000878184 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000878184 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000878184 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000878184 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878184 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-05-04
000878184 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000878184 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000878184 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878184 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000878184 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000878184 920__ $$lyes
000878184 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000878184 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000878184 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
000878184 980__ $$ajournal
000878184 980__ $$aVDB
000878184 980__ $$aUNRESTRICTED
000878184 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000878184 980__ $$aI:(DE-588b)4597118-3
000878184 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000878184 9801_ $$aFullTexts