001     878184
005     20230111074326.0
024 7 _ |a 10.1080/07391102.2020.1776636
|2 doi
024 7 _ |a 0008-7114
|2 ISSN
024 7 _ |a 0739-1102
|2 ISSN
024 7 _ |a 1538-0254
|2 ISSN
024 7 _ |a 2165-5391
|2 ISSN
024 7 _ |a 2128/28359
|2 Handle
024 7 _ |a 32490728
|2 pmid
024 7 _ |a WOS:000544776000001
|2 WOS
037 _ _ |a FZJ-2020-02672
082 _ _ |a 570
100 1 _ |a Shvetsov, A. V.
|0 0000-0003-1140-5751
|b 0
245 _ _ |a Cold and distant: structural features of the nucleoprotein complex of a cold-adapted influenza A virus strain
260 _ _ |a Abingdon [u.a.]
|c 2021
|b Taylor & Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1627554293_29226
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Two influenza A nucleoprotein variants (wild-type: G102R; and mutant: G102R and E292G) were studied with regard to macro-molecular interactions in oligomeric form (24-mers). The E292G mutation has been previously shown to provide cold adaptation. Molecular dynamics simulations of these complexes and trajectory analysis showed that the most significant difference between the obtained models was distance between nucleoprotein complex strands. The isolated complexes of two ribonucleoprotein variants were characterized by transmission electron microscopy and differential scanning fluorimetry (DSF). Presence of the E292G substitution was shown by DSF to affect nucleoprotein complex melting temperature. In the filament interface peptide model, it was shown that the peptide corresponding in primary structure to the wild-type NP (SGYDFEREGYS) is prone to temperature-dependent self-association, unlike the peptide corresponding to E292G substitution (SGYDFGREGYS). It was also shown that the SGYDFEREGYS peptide is capable of interacting with a monomeric nucleoprotein (wild type); this interaction’s equilibrium dissociation constant is five orders of magnitude lower than for the SGYDFGREGYS peptide. Using small-angle neutron scattering (SANS), the supramolecular structures of isolated complexes of these proteins were studied at temperatures of 15, 32, and 37 °C. SANS data show that the structures of the studied complexes at elevated temperature differ from the rod-like particle model and react differently to temperature changes. The data suggest that the mechanism behind cold adaptation with E292G is associated with a weakening of the interaction between strands of the ribonucleoprotein complex and, as a result, the appearance of inter-chain interface flexibility necessary for complex function at low temperature.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 1
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-2: Small angle scattering diffractometer
|f NL3ao
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS2-20140101
|5 EXP:(DE-MLZ)KWS2-20140101
|6 EXP:(DE-MLZ)NL3ao-20140101
|x 1
700 1 _ |a Lebedev, D. V.
|0 0000-0003-4313-9953
|b 1
700 1 _ |a Zabrodskaya, Y. A.
|0 0000-0003-2012-9461
|b 2
|e Corresponding author
700 1 _ |a Shaldzhyan, A. A.
|0 0000-0002-8646-6252
|b 3
700 1 _ |a Egorova, M. A.
|0 0000-0003-1408-8413
|b 4
700 1 _ |a Vinogradova, D. S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Konevega, A. L.
|0 0000-0003-0125-7150
|b 6
700 1 _ |a Gorshkov, A. N.
|0 0000-0003-2303-1144
|b 7
700 1 _ |a Ramsay, E. S.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Radulescu, Aurel
|0 P:(DE-Juel1)130905
|b 9
700 1 _ |a Sergeeva, M. V.
|0 0000-0003-0411-9896
|b 10
700 1 _ |a Plotnikova, M. A.
|0 0000-0001-8196-3156
|b 11
700 1 _ |a Komissarov, A. B.
|0 0000-0003-1733-1255
|b 12
700 1 _ |a Taraskin, A. S.
|0 0000-0003-2235-9658
|b 13
700 1 _ |a Lebedev, K. I.
|0 0000-0002-8710-6136
|b 14
700 1 _ |a Garmay, Yu. P.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Kuznetsov, V. V.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Isaev-Ivanov, V. V.
|0 0000-0002-4593-1971
|b 17
700 1 _ |a Vasin, A. V.
|0 0000-0002-1391-7139
|b 18
700 1 _ |a Tsybalova, L. M.
|0 0000-0002-1193-5907
|b 19
700 1 _ |a Egorov, V. V.
|0 0000-0002-3670-8962
|b 20
773 _ _ |a 10.1080/07391102.2020.1776636
|g p. 1 - 10
|0 PERI:(DE-600)2085732-9
|n 12
|p 4375-4384
|t Journal of biomolecular structure & dynamics
|v 39
|y 2021
|x 0739-1102
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878184/files/847608.full.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878184/files/NPcold-final.pdf
909 C O |o oai:juser.fz-juelich.de:878184
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130905
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21