001     878189
005     20221029130703.0
024 7 _ |a 10.1016/j.neuroimage.2020.117160
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a 2128/25422
|2 Handle
024 7 _ |a altmetric:86145470
|2 altmetric
024 7 _ |a pmid:32679251
|2 pmid
024 7 _ |a WOS:000600795000025
|2 WOS
037 _ _ |a FZJ-2020-02677
082 _ _ |a 610
100 1 _ |a Mauler, Jörg
|0 P:(DE-Juel1)144215
|b 0
|e Corresponding author
245 _ _ |a Bolus infusion scheme for the adjustment of steady state [11C]Flumazenil levels in the grey matter and in the blood plasma for neuroreceptor imaging
260 _ _ |a Orlando, Fla.
|c 2020
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666966319_10383
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The use of hybrid PET/MR imaging facilitates the simultaneous investigation of challenge-related changes in ligand binding to neuroreceptors using PET, while concurrently measuring neuroactivation or blood flow with MRI. Having attained a steady state of the PET radiotracer using a bolus-infusion protocol, it is possible to observe alterations in ligand neuroreceptor binding through changes in distribution volumes. Here, we present an iterative procedure for establishing an administration scheme to obtain steady state [11C]flumazenil concentrations in grey matter in the human brain. In order to achieve a steady state in the shortest possible time, the bolus infusion ratio from a previous examination was adapted to fit the subsequent examination. 17 male volunteers were included in the study. Boli and infusions with different weightings were given to the subjects and were characterised by values from 74 ​min down to 42 ​min. Metabolite analysis was used to ascertain the value of unmetabolised flumazenil in the plasma, and PET imaging was used to assess its binding in the grey matter. The flumazenil time-activity curves (TACs) in the brain were decomposed into activity contributions from pure grey and white matter and analysed for 12 ​vol of interest (VOIs). The curves highlighted a large variability in metabolic rates between the subjects, with ​= ​54.3 ​min being a reliable value to provide flumazenil equilibrium conditions in the majority of the VOIs and cases. The distribution volume of flumazenil in all 12 VOIs was determined.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Heinzel, Alexander
|0 P:(DE-Juel1)132315
|b 1
|u fzj
700 1 _ |a Matusch, Andreas
|0 P:(DE-Juel1)138474
|b 2
|u fzj
700 1 _ |a Herzog, Hans
|0 P:(DE-Juel1)131768
|b 3
|u fzj
700 1 _ |a Neuner, Irene
|0 P:(DE-Juel1)131781
|b 4
|u fzj
700 1 _ |a Scheins, Jürgen
|0 P:(DE-Juel1)131791
|b 5
|u fzj
700 1 _ |a Wyss, Christine
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dammers, Jürgen
|0 P:(DE-Juel1)131757
|b 7
|u fzj
700 1 _ |a Lang, Markus
|0 P:(DE-Juel1)131831
|b 8
|u fzj
700 1 _ |a Ermert, Johannes
|0 P:(DE-Juel1)131818
|b 9
|u fzj
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 10
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 11
700 1 _ |a Shah, N. Jon
|0 P:(DE-Juel1)131794
|b 12
|u fzj
773 _ _ |a 10.1016/j.neuroimage.2020.117160
|g Vol. 221, p. 117160 -
|0 PERI:(DE-600)1471418-8
|p 117160 -
|t NeuroImage
|v 221
|y 2020
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/878189/files/Invoice_OAD0000056812.pdf
856 4 _ |u https://juser.fz-juelich.de/record/878189/files/Bolus%20infusion%20scheme%20for%20the%20adjustment%20of%20steady%20state%20%5B11C%5DFlumazenil%20levels%20in%20the%20grey%20matter%20and%20in%20the%20blood%20plasma%20for%20neuroreceptor%20imaging.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/878189/files/Invoice_OAD0000056812.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:878189
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144215
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132315
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138474
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131768
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131781
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131757
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131831
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131818
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Neuroimaging
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2018
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2018
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-03
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 2
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 3
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21