001     878195
005     20210130005453.0
024 7 _ |a 10.1103/PhysRevApplied.13.044079
|2 doi
024 7 _ |a 2331-7019
|2 ISSN
024 7 _ |a 2331-7043
|2 ISSN
024 7 _ |a 2128/25423
|2 Handle
024 7 _ |a altmetric:80947718
|2 altmetric
024 7 _ |a WOS:000529842800003
|2 WOS
037 _ _ |a FZJ-2020-02683
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Rana, K. Gaurav
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Room-Temperature Skyrmions at Zero Field in Exchange-Biased Ultrathin Films
260 _ _ |a College Park, Md. [u.a.]
|c 2020
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1596458101_21377
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We demonstrate that magnetic skyrmions with a mean diameter around 60 nm can be stabilized at room temperature and zero external magnetic field in an exchange-biased Pt/Co/Ni80Fe20/Ir20Mn80 multilayer stack. This is achieved through an advanced optimization of the multilayer-stack composition in order to balance the different magnetic energies controlling the skyrmion size and stability. Magnetic imaging is performed both with magnetic force microscopy and scanning nitrogen-vacancy magnetometry, the latter providing unambiguous measurements at zero external magnetic field. In such samples, we show that exchange bias provides an immunity of the skyrmion spin texture to moderate external-magnetic-field perturbations, in the tens-of-millitesla range, which is an important feature for applications such as memory devices. These results establish exchange-biased multilayer stacks as a promising platform toward the effective realization of memory and logic devices based on magnetic skyrmions.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
536 _ _ |a DARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18)
|0 G:(DE-Juel-1)Z1422.01.18
|c Z1422.01.18
|x 1
536 _ _ |0 G:(EU-Grant)856538
|c 856538
|x 2
|a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|f ERC-2019-SyG
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Finco, A.
|0 0000-0002-0197-7476
|b 1
700 1 _ |a Fabre, F.
|0 0000-0002-5422-796X
|b 2
700 1 _ |a Chouaieb, S.
|0 0000-0003-3885-9593
|b 3
700 1 _ |a Haykal, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Buda-Prejbeanu, L. D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fruchart, O.
|0 0000-0001-7717-5229
|b 6
700 1 _ |a Le Denmat, S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a David, P.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Belmeguenai, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Denneulin, T.
|0 P:(DE-Juel1)172928
|b 10
700 1 _ |a Dunin-Borkowski, R. E.
|0 P:(DE-Juel1)144121
|b 11
700 1 _ |a Gaudin, G.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Jacques, V.
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
700 1 _ |a Boulle, O.
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 _ _ |a 10.1103/PhysRevApplied.13.044079
|g Vol. 13, no. 4, p. 044079
|0 PERI:(DE-600)2760310-6
|n 4
|p 044079
|t Physical review applied
|v 13
|y 2020
|x 2331-7019
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878195/files/PhysRevApplied.13.044079.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878195/files/Room%20Temperature_TD.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878195/files/Room%20Temperature_TD.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878195/files/PhysRevApplied.13.044079.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878195
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)172928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-17
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2018
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21