001     878196
005     20210130005453.0
024 7 _ |a 10.1063/1.5122954
|2 doi
024 7 _ |a 2128/25424
|2 Handle
024 7 _ |a altmetric:74735636
|2 altmetric
024 7 _ |a WOS:000515440700001
|2 WOS
037 _ _ |a FZJ-2020-02684
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Everhardt, Arnoud S.
|0 0000-0002-6690-143X
|b 0
|e Corresponding author
245 _ _ |a Temperature-independent giant dielectric response in transitional BaTiO 3 thin films
260 _ _ |a New York, NY
|c 2020
|b AIP
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1596462231_21261
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ferroelectric materials exhibit the largest dielectric permittivities and piezoelectric responses in nature, making them invaluable in applications from supercapacitors or sensors to actuators or electromechanical transducers. The origin of this behavior is their proximity to phase transitions. However, the largest possible responses are most often not utilized due to the impracticality of using temperature as a control parameter and to operate at phase transitions. This has motivated the design of solid solutions with morphotropic phase boundaries between different polar phases that are tuned by composition and that are weakly dependent on temperature. Thus far, the best piezoelectrics have been achieved in materials with intermediate (bridging or adaptive) phases. But so far, complex chemistry or an intricate microstructure has been required to achieve temperature-independent phase-transition boundaries. Here, we report such a temperature-independent bridging state in thin films of chemically simple BaTiO3. A coexistence among tetragonal, orthorhombic, and their bridging low-symmetry phases are shown to induce continuous vertical polarization rotation, which recreates a smear in-transition state and leads to a giant temperature-independent dielectric response. The current material contains a ferroelectric state that is distinct from those at morphotropic phase boundaries and cannot be considered as ferroelectric crystals. We believe that other materials can be engineered in a similar way to contain a ferroelectric state with gradual change of structure, forming a class of transitional ferroelectrics. Similar mechanisms could be utilized in other materials to design low-power ferroelectrics, piezoelectrics, dielectrics, or shape-memory alloys, as well as efficient electro- and magnetocalorics.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Denneulin, Thibaud
|0 P:(DE-Juel1)172928
|b 1
|u fzj
700 1 _ |a Grünebohm, Anna
|0 0000-0001-9299-058X
|b 2
700 1 _ |a Shao, Yu-Tsun
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ondrejkovic, Petr
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhou, Silang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Domingo, Neus
|0 0000-0002-5229-6638
|b 6
700 1 _ |a Catalan, Gustau
|0 0000-0003-0214-4828
|b 7
700 1 _ |a Hlinka, Jiří
|0 0000-0002-9293-4462
|b 8
700 1 _ |a Zuo, Jian-Min
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Matzen, Sylvia
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Noheda, Beatriz
|0 0000-0001-8456-2286
|b 11
|e Corresponding author
773 _ _ |a 10.1063/1.5122954
|g Vol. 7, no. 1, p. 011402 -
|0 PERI:(DE-600)2265524-4
|n 1
|p 011402 -
|t Applied physics reviews
|v 7
|y 2020
|x 1931-9401
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878196/files/1.5122954.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878196/files/1.5122954.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878196
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172928
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS REV : 2018
|d 2020-01-10
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b APPL PHYS REV : 2018
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-10
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-01-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-10
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21