000878198 001__ 878198
000878198 005__ 20210130005455.0
000878198 0247_ $$2doi$$a10.1038/s42005-019-0194-9
000878198 0247_ $$2Handle$$a2128/25425
000878198 0247_ $$2altmetric$$aaltmetric:49157327
000878198 0247_ $$2WOS$$aWOS:000480281000001
000878198 037__ $$aFZJ-2020-02686
000878198 041__ $$aEnglish
000878198 082__ $$a530
000878198 1001_ $$0P:(DE-HGF)0$$aLöbl, Matthias C.$$b0$$eCorresponding author
000878198 245__ $$aExcitons in InGaAs quantum dots without electron wetting layer states
000878198 260__ $$aLondon$$bSpringer Nature$$c2019
000878198 3367_ $$2DRIVER$$aarticle
000878198 3367_ $$2DataCite$$aOutput Types/Journal article
000878198 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596465152_21470
000878198 3367_ $$2BibTeX$$aARTICLE
000878198 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878198 3367_ $$00$$2EndNote$$aJournal Article
000878198 520__ $$aThe Stranski–Krastanov growth-mode facilitates the self-assembly of quantum dots (QDs) by using lattice-mismatched semiconductors, for instance, InAs and GaAs. These QDs are excellent photon emitters: the optical decay of QD-excitons creates high-quality single-photons, which can be used for quantum communication. One significant drawback of the Stranski–Krastanov mode is the wetting layer. It results in a continuum close in energy to the confined states of the QD. The wetting-layer-states lead to scattering and dephasing of QD-excitons. Here, we report a slight modification to the Stranski–Krastanov growth-protocol of InAs on GaAs, which results in a radical change of the QD-properties. We demonstrate that the new QDs have no wetting-layer-continuum for electrons. They can host highly charged excitons where up to six electrons occupy the same QD. In addition, single QDs grown with this protocol exhibit optical linewidths matching those of the very best QDs making them an attractive alternative to conventional InGaAs QDs.
000878198 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878198 588__ $$aDataset connected to CrossRef
000878198 7001_ $$0P:(DE-HGF)0$$aScholz, Sven$$b1
000878198 7001_ $$0P:(DE-HGF)0$$aSöllner, Immo$$b2
000878198 7001_ $$0P:(DE-HGF)0$$aRitzmann, Julian$$b3
000878198 7001_ $$0P:(DE-Juel1)172928$$aDenneulin, Thibaud$$b4$$ufzj
000878198 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b5$$ufzj
000878198 7001_ $$0P:(DE-HGF)0$$aKardynał, Beata E.$$b6
000878198 7001_ $$00000-0001-9776-2922$$aWieck, Andreas D.$$b7
000878198 7001_ $$00000-0002-2871-7789$$aLudwig, Arne$$b8
000878198 7001_ $$00000-0002-3095-3596$$aWarburton, Richard J.$$b9
000878198 773__ $$0PERI:(DE-600)2921913-9$$a10.1038/s42005-019-0194-9$$gVol. 2, no. 1, p. 93$$n1$$p93$$tCommunications Physics$$v2$$x2399-3650$$y2019
000878198 8564_ $$uhttps://juser.fz-juelich.de/record/878198/files/s42005-019-0194-9.pdf$$yOpenAccess
000878198 8564_ $$uhttps://juser.fz-juelich.de/record/878198/files/s42005-019-0194-9.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878198 909CO $$ooai:juser.fz-juelich.de:878198$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172928$$aForschungszentrum Jülich$$b4$$kFZJ
000878198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b5$$kFZJ
000878198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b6$$kFZJ
000878198 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a b.kardynal$$b6
000878198 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878198 9141_ $$y2020
000878198 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000878198 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878198 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-01-16
000878198 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-16
000878198 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-16
000878198 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-16
000878198 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878198 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-16
000878198 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-16
000878198 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000878198 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000878198 920__ $$lyes
000878198 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878198 980__ $$ajournal
000878198 980__ $$aVDB
000878198 980__ $$aUNRESTRICTED
000878198 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878198 9801_ $$aFullTexts