000878201 001__ 878201
000878201 005__ 20210130005456.0
000878201 0247_ $$2doi$$a10.1016/j.sse.2019.03.009
000878201 0247_ $$2ISSN$$a0038-1101
000878201 0247_ $$2ISSN$$a1879-2405
000878201 0247_ $$2WOS$$aWOS:000466840600019
000878201 037__ $$aFZJ-2020-02689
000878201 041__ $$aEnglish
000878201 082__ $$a620
000878201 1001_ $$0P:(DE-HGF)0$$aLedentsov, N. N.$$b0$$eCorresponding author
000878201 245__ $$aRoom temperature yellow InGaAlP quantum dot laser
000878201 260__ $$aOxford [u.a.]$$bPergamon, Elsevier Science$$c2019
000878201 3367_ $$2DRIVER$$aarticle
000878201 3367_ $$2DataCite$$aOutput Types/Journal article
000878201 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596459982_21470
000878201 3367_ $$2BibTeX$$aARTICLE
000878201 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878201 3367_ $$00$$2EndNote$$aJournal Article
000878201 520__ $$aWe report simulation of the conduction band alignment in tensile–strained GaP–enriched barrier structures and experimental results on injection lasing in the green–orange spectral range (558–605 nm) in (AlxGa1–x)0.5In0.5P–GaAs diodes containing such barriers. The wafers were grown by metal–organic vapor phase epitaxy side–by–side on (8 1 1)A, (2 1 1)A and (3 2 2)A GaAs substrates, which surface orientations were strongly tilted towards the [1 1 1]A direction with respect to the (1 0 0) plane. Four sheets of GaP–rich quantum barrier insertions were applied to suppress the leakage of non–equilibrium electrons from the gain medium. Two types of the gain medium were applied. In one case 4–fold stacked tensile–strained (In,Ga)P insertions were used. Experimental data shows that self–organized vertically–correlated quantum dots (QDs) are formed on (2 1 1)A– and (3 2 2)A–oriented substrates, while corrugated quantum wires are formed on the (8 1 1)A surface. In the other case a short–period superlattice (SPSL) composed of 16–fold stacked quasi–lattice–matched 1.4 nm–thick In0.5Ga0.5P layers separated by 4 nm–thick (Al0.6Ga0.4)0.5In0.5P layers was applied. Laser diodes with 4–fold stacked QDs having a threshold current densities of ∼7–10 kA/cm2 at room temperature were realized for both (2 1 1)A and (3 2 2)A surface orientations at cavity lengths of ∼1 mm. Emission wavelength at room temperature was ∼599–603 nm. Threshold current density for the stimulated emission was as low as ∼1 kA/cm2. For (8 1 1)A–grown structures no room temperature lasing was observed. SPSL structures demonstrated lasing only at low temperatures <200 K. The shortest wavelength (558 nm, 90 K) in combination with the highest operation temperature (150 K) was realized for (3 2 2)A–oriented substrates in agreement with theoretical predictions.
000878201 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878201 588__ $$aDataset connected to CrossRef
000878201 7001_ $$0P:(DE-HGF)0$$aShchukin, V. A.$$b1
000878201 7001_ $$0P:(DE-HGF)0$$aShernyakov, Yu. M.$$b2
000878201 7001_ $$0P:(DE-HGF)0$$aKulagina, M. M.$$b3
000878201 7001_ $$0P:(DE-HGF)0$$aPayusov, A. S.$$b4
000878201 7001_ $$0P:(DE-HGF)0$$aGordeev, N. Yu.$$b5
000878201 7001_ $$0P:(DE-HGF)0$$aMaximov, M. V.$$b6
000878201 7001_ $$0P:(DE-HGF)0$$aZhukov, A. E.$$b7
000878201 7001_ $$0P:(DE-HGF)0$$aKarachinsky, L. Ya.$$b8
000878201 7001_ $$0P:(DE-Juel1)172928$$aDenneulin, T.$$b9$$ufzj
000878201 7001_ $$0P:(DE-HGF)0$$aCherkashin, N.$$b10
000878201 773__ $$0PERI:(DE-600)2012825-3$$a10.1016/j.sse.2019.03.009$$gVol. 155, p. 129 - 138$$p129 - 138$$tSolid state electronics$$v155$$x0038-1101$$y2019
000878201 909CO $$ooai:juser.fz-juelich.de:878201$$pVDB
000878201 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172928$$aForschungszentrum Jülich$$b9$$kFZJ
000878201 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878201 9141_ $$y2020
000878201 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-15$$wger
000878201 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-15
000878201 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-15
000878201 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-15
000878201 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-15
000878201 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-15
000878201 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-15
000878201 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-15
000878201 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-15
000878201 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE ELECTRON : 2018$$d2020-01-15
000878201 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-15
000878201 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-15
000878201 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-15
000878201 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-15
000878201 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-15
000878201 920__ $$lyes
000878201 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878201 980__ $$ajournal
000878201 980__ $$aVDB
000878201 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878201 980__ $$aUNRESTRICTED