001     878201
005     20210130005456.0
024 7 _ |a 10.1016/j.sse.2019.03.009
|2 doi
024 7 _ |a 0038-1101
|2 ISSN
024 7 _ |a 1879-2405
|2 ISSN
024 7 _ |a WOS:000466840600019
|2 WOS
037 _ _ |a FZJ-2020-02689
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Ledentsov, N. N.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Room temperature yellow InGaAlP quantum dot laser
260 _ _ |a Oxford [u.a.]
|c 2019
|b Pergamon, Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1596459982_21470
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report simulation of the conduction band alignment in tensile–strained GaP–enriched barrier structures and experimental results on injection lasing in the green–orange spectral range (558–605 nm) in (AlxGa1–x)0.5In0.5P–GaAs diodes containing such barriers. The wafers were grown by metal–organic vapor phase epitaxy side–by–side on (8 1 1)A, (2 1 1)A and (3 2 2)A GaAs substrates, which surface orientations were strongly tilted towards the [1 1 1]A direction with respect to the (1 0 0) plane. Four sheets of GaP–rich quantum barrier insertions were applied to suppress the leakage of non–equilibrium electrons from the gain medium. Two types of the gain medium were applied. In one case 4–fold stacked tensile–strained (In,Ga)P insertions were used. Experimental data shows that self–organized vertically–correlated quantum dots (QDs) are formed on (2 1 1)A– and (3 2 2)A–oriented substrates, while corrugated quantum wires are formed on the (8 1 1)A surface. In the other case a short–period superlattice (SPSL) composed of 16–fold stacked quasi–lattice–matched 1.4 nm–thick In0.5Ga0.5P layers separated by 4 nm–thick (Al0.6Ga0.4)0.5In0.5P layers was applied. Laser diodes with 4–fold stacked QDs having a threshold current densities of ∼7–10 kA/cm2 at room temperature were realized for both (2 1 1)A and (3 2 2)A surface orientations at cavity lengths of ∼1 mm. Emission wavelength at room temperature was ∼599–603 nm. Threshold current density for the stimulated emission was as low as ∼1 kA/cm2. For (8 1 1)A–grown structures no room temperature lasing was observed. SPSL structures demonstrated lasing only at low temperatures <200 K. The shortest wavelength (558 nm, 90 K) in combination with the highest operation temperature (150 K) was realized for (3 2 2)A–oriented substrates in agreement with theoretical predictions.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Shchukin, V. A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Shernyakov, Yu. M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kulagina, M. M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Payusov, A. S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gordeev, N. Yu.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Maximov, M. V.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zhukov, A. E.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Karachinsky, L. Ya.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Denneulin, T.
|0 P:(DE-Juel1)172928
|b 9
|u fzj
700 1 _ |a Cherkashin, N.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1016/j.sse.2019.03.009
|g Vol. 155, p. 129 - 138
|0 PERI:(DE-600)2012825-3
|p 129 - 138
|t Solid state electronics
|v 155
|y 2019
|x 0038-1101
909 C O |o oai:juser.fz-juelich.de:878201
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172928
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-15
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-15
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-15
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE ELECTRON : 2018
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-15
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-15
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21