000878202 001__ 878202
000878202 005__ 20240712113252.0
000878202 0247_ $$2doi$$a10.1002/fuce.201900234
000878202 0247_ $$2ISSN$$a1615-6846
000878202 0247_ $$2ISSN$$a1615-6854
000878202 0247_ $$2Handle$$a2128/25560
000878202 0247_ $$2WOS$$aWOS:000563058600014
000878202 037__ $$aFZJ-2020-02690
000878202 082__ $$a620
000878202 1001_ $$0P:(DE-Juel1)129851$$aGlüsen, A.$$b0$$eCorresponding author
000878202 245__ $$a45% Cell Efficiency in DMFCs via Process Engineering
000878202 260__ $$aWeinheim$$bWiley-VCH$$c2020
000878202 3367_ $$2DRIVER$$aarticle
000878202 3367_ $$2DataCite$$aOutput Types/Journal article
000878202 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599486099_14754
000878202 3367_ $$2BibTeX$$aARTICLE
000878202 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878202 3367_ $$00$$2EndNote$$aJournal Article
000878202 520__ $$aMethanol is a convenient liquid fuel for fuel cells, but is not converted as efficiently into electrical energy as hydrogen. This is due to the slower reaction of methanol at the anode as well as to methanol permeation.When optimizing the direct methanol fuel cell (DMFC) process, methanol concentration and flow rate, current density and air flow rate must also be taken into account. A high methanol concentration facilitates dynamic operation up to high current densities, but also leads to high methanol permeation. The air flow rate must be adjusted so that the cooling effect of evaporating water is balanced by the heat produced in the cell. Therefore, a cell with low permeation must be operated at low air flow rates to achieve autothermal operation at elevated temperatures, which can in turn reduce cell performance. For each current density, there is an optimum amount of methanol feed.In this paper, we show how these effects have to be balanced using air‐flow rates calculated to ensure thermal equilibrium. It is possible to achieve electrical cell efficiencies of up to 44% in a self‐heating DMFC. Another small increase in efficiency can be achieved by using humidified air at the cathode.
000878202 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000878202 588__ $$aDataset connected to CrossRef
000878202 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b1
000878202 7001_ $$0P:(DE-Juel1)129928$$aStolten, D.$$b2
000878202 773__ $$0PERI:(DE-600)2054621-X$$a10.1002/fuce.201900234$$gp. fuce.201900234$$n4$$p507-514$$tFuel cells$$v20$$x1615-6854$$y2020
000878202 8564_ $$uhttps://juser.fz-juelich.de/record/878202/files/fuce.201900234.pdf$$yOpenAccess
000878202 8564_ $$uhttps://juser.fz-juelich.de/record/878202/files/fuce.201900234.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878202 8767_ $$92020-07-21$$d2020-08-03$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pfuce.201900234.R1
000878202 909CO $$ooai:juser.fz-juelich.de:878202$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000878202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129851$$aForschungszentrum Jülich$$b0$$kFZJ
000878202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b1$$kFZJ
000878202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b2$$kFZJ
000878202 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b2$$kRWTH
000878202 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000878202 9141_ $$y2020
000878202 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000878202 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000878202 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878202 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000878202 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878202 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878202 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000878202 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000878202 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878202 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUEL CELLS : 2018$$d2020-02-26
000878202 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000878202 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878202 920__ $$lyes
000878202 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000878202 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000878202 9801_ $$aAPC
000878202 9801_ $$aFullTexts
000878202 980__ $$ajournal
000878202 980__ $$aVDB
000878202 980__ $$aUNRESTRICTED
000878202 980__ $$aI:(DE-Juel1)IEK-14-20191129
000878202 980__ $$aI:(DE-Juel1)IEK-3-20101013
000878202 980__ $$aAPC
000878202 981__ $$aI:(DE-Juel1)IET-4-20191129
000878202 981__ $$aI:(DE-Juel1)ICE-2-20101013
000878202 981__ $$aI:(DE-Juel1)IET-4-20191129