000878206 001__ 878206
000878206 005__ 20220930130247.0
000878206 0247_ $$2URN$$aurn:nbn:de:0001-2020071402
000878206 0247_ $$2Handle$$a2128/25427
000878206 0247_ $$2ISSN$$a1868-8489
000878206 020__ $$a978-3-95806-486-7
000878206 037__ $$aFZJ-2020-02694
000878206 041__ $$aEnglish
000878206 1001_ $$0P:(DE-Juel1)168333$$aFehling, Marc$$b0$$eCorresponding author$$gmale$$ufzj
000878206 245__ $$aAlgorithms for massively parallel generic hp-adaptive finite element methods$$f- 2020
000878206 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2020
000878206 300__ $$avii, 78 S.
000878206 3367_ $$2DataCite$$aOutput Types/Dissertation
000878206 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000878206 3367_ $$2ORCID$$aDISSERTATION
000878206 3367_ $$2BibTeX$$aPHDTHESIS
000878206 3367_ $$02$$2EndNote$$aThesis
000878206 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1601885213_6316
000878206 3367_ $$2DRIVER$$adoctoralThesis
000878206 4900_ $$aSchriften des Forschungszentrums Jülich. IAS Series$$v43
000878206 502__ $$aUniversität Wuppertal, 2020$$bDissertation$$cUniversität Wuppertal$$d2020
000878206 520__ $$aEfficient algorithms for the numerical solution of partial differential equations are required to solve problems on an economically viable timescale. In general, this is achieved by adapting the resolution of the discretization to the investigated problem, as well as exploiting hardware specifications. For the latter category, parallelization plays a major role for modern multi-core and multi-node architectures, especially in the context of high-performance computing. Using finite element methods, solutions are approximated by discretizing the function space of the problem with piecewise polynomials. With $\textit{hp}$-adaptive methods, the polynomial degrees of these basis functions may vary on locally refined meshes. We present algorithms and data structures required for generic hp-adaptive finite element software applicable for both continuous and discontinuous Galerkin methods on distributed memory systems. Both function space and mesh may be adapted dynamically during the solution process. We cover details concerning the unique enumeration of degrees of freedom with continuous Galerkin methods, the communication of variable size data, and load balancing. Furthermore, we present strategies to determine the type of adaptation based on error estimation and prediction as well as smoothness estimation via the decay rate of coefficients of Fourier and Legendre series expansions. Both refinement and coarsening are considered. A reference implementation in the open-source library deal. II$^{1}$ is provided and applied to the Laplace problem on a domain with a reentrant corner which invokes a singularity. With this example, we demonstrate the benefits of the $\textit{hp}$-adaptive methods in terms of error convergence and show that our algorithm scales up to 49,152 MPI processes.
000878206 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000878206 536__ $$0G:(DE-Juel1)BMBF-13N13266$$aORPHEUS - Optimierung der Rauchableitung und Personenführung in U-Bahnhöfen: Experimente und Simulationen (BMBF-13N13266)$$cBMBF-13N13266$$x1
000878206 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x2
000878206 8564_ $$uhttps://juser.fz-juelich.de/record/878206/files/IAS%2043%20Fehling.pdf$$yOpenAccess
000878206 8564_ $$uhttps://juser.fz-juelich.de/record/878206/files/IAS%2043%20Fehling.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878206 909CO $$ooai:juser.fz-juelich.de:878206$$pVDB$$pdriver$$purn$$popen_access$$popenaire$$pdnbdelivery
000878206 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878206 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878206 9141_ $$y2020
000878206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168333$$aForschungszentrum Jülich$$b0$$kFZJ
000878206 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000878206 920__ $$lyes
000878206 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000878206 980__ $$aphd
000878206 980__ $$aVDB
000878206 980__ $$aUNRESTRICTED
000878206 980__ $$abook
000878206 980__ $$aI:(DE-Juel1)IAS-7-20180321
000878206 9801_ $$aFullTexts