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Abstract

Irrigated agriculture is very important in securing food production for an increasing
population over the next decades. Given the scarcity of water resources, optimal irrigation
management is needed to reduce water usage while maintaining maximal crop productivity.
The irrigation scheduling methods are normally based on soil water content (SWC)
measurements, e.g. from soil moisture sensors. Meanwhile land surface models such as the
Community Land Model (CLM) have been commonly used to simulate SWC, crop status and
hydrological processes. Data assimilation (DA) can combine different measurement data with
a numerical model to get optimal estimation of model states. The integration of SWC
measurements and Community Land Model using a sequential data assimilation method is
promising to improve the real-time prediction of SWC and the calculation of irrigation
demand. One of the aim of this PhD work is to introduce a new CLM-DA based real-time
irrigation scheduling method and test it in a real world case, to explore the possibility of
using other sources of SWC measurements (e.g. Cosmic-ray Neutron Sensing) for irrigation
scheduling and to conduct the uncertainty analysis of irrigation modelling with CLM.

In the first study of this PhD thesis, we conducted a real-time irrigation scheduling campaign
in a drip irrigated citrus field of Picassent, Spain. The SWC observations from soil sensors
and CLM modelling were combined using a sequential data assimilation method to get real-
time prediction of soil water deficit and irrigation demand. In addition, the weather forecasts
by the Global Forecast System were used as atmospheric forcing data for CLM to predict soil
water deficit for the next few days and schedule irrigation accordingly. The performance of
the CLM-DA irrigation scheduling was investigated and compared with other irrigation
scheduling approaches including the FAO water balance method and traditional farmers’
experience. The comparison of the methods was based on the applied irrigation amounts,
vegetation water stress measurements and citrus production. Results suggest that the CLM-
DA based irrigation scheduling approach has better water saving potential compared to
traditional irrigation scheduling methods. With less irrigation water, the citrus fields using
CLM-DA method showed no significant production loss or water stress. Another finding
from this study is that the observation of SWC is an important factor for the irrigation
estimation with CLM-DA method.

In the second study of this thesis, the Cosmic-ray Neutron Sensing (CRNS) method was used
to investigate its potential for monitoring SWC and scheduling drip irrigation. The CRNS
probe can determine root zone SWC based on measured neutron intensity at the scale of tens
of hectares. For the Picassent site in Spain, the footprint SWC was derived through soil
sampling in the field and a calibration function. The overall SWC for the CRNS footprint was
well characterized, but the experimental results also indicated the limitations of CRNS to
detect drip water input. We found that the CRNS failed to sense the SWC variation caused by
drip irrigation. In order to better interpret the results of the field experiment, the neutron
transport model URANOS was used to simulate the neutron response to drip irrigation at the



CRNS location. Both the CRNS measurements and the neutron transport simulation results
suggest that a standard CRNS probe is insufficient to detect the neutron response to drip
irrigation in our specific case, because of the small area of irrigated patches, short irrigation
time and weak SWC changes. Although the precise scheduling of drip irrigation is not
feasible with a traditional CRNS probe, CRNS would perform better in drier case or with
more intense irrigation events. New CRNS instruments like the cosmic-ray rover could be
used to increase the sensitivity and to detect small-scale drip irrigation.

In the third study of this PhD thesis, we investigated the uncertainties of simulating irrigation
demand by a land surface model. The lack of information on irrigation frequency, irrigation
factor and the spatiotemporal variation of irrigation intensities affect the irrigation estimation
by land surface models, especially for large-scale applications. Different model simulation
scenarios were used to evaluate the impact of these uncertainties on the simulated irrigation
demand, land surface fluxes and water balance over the Indian domain. This was done with
the Community Land Model for the year of 2010. The daily-irrigated cases with default
irrigation factor had the highest irrigation amounts, evapotranspiration and runoff throughout
the year. The modelled irrigation requirement and surface runoff increased with the irrigation
frequency and irrigation factor. It indicates that the irrigation factor should be calibrated to
avoid water loss through runoff and to better model the irrigation for regional scale. The land
surface fluxes modelled by CLM if a season-specific irrigation map was used as input,
showed a similar trend as remote sensing based evapotranspiration. Using season-specific
irrigation maps resulted in a higher transpiration-evapotranspiration ratio in the pre-monsoon
season compared to other irrigation strategies, which means higher irrigation efficiency. It
indicates that more accurate spatial and temporal information on irrigation will improve land
surface modelling results. However, the resolution of irrigation modelling should be
increased to improve the estimation of soil water deficit and irrigation demand.

Overall, our results show that the CLM-DA method provides a promising approach for
irrigation scheduling by combining SWC observations and a land surface model using data
assimilation, with the ability of real-time on-line control and the possibility to ingest different
types of measurement data. Data assimilation turns out to be a promising method to integrate
many kinds of observation data into a dynamic model and to improve the real-time water
deficit prediction and irrigation allocation. SWC measurements from local (e.g. FDR sensor)
to medium scale (e.g. CRNS) and large scale (e.g. remote sensing) along with modelling
scales from local to large, will extend the feasibility of the CLM-DA method to different
scales of irrigation management. The accurate information of spatiotemporal irrigation
intensity is necessary for better large-scale irrigation modelling and characterization of land-
atmosphere exchange fluxes and water balance.



Zusammenfassung

Die Bewisserungsfeldwirtschaft spielt eine entscheidende Rolle dabei, den steigenden
Nahrungsmittelbedarf der wachsenden Weltbevolkerung in den néchsten Jahrzehnten zu
decken.  Angesichts der zunechmenden  Wasserknappheit ist ein  optimales
Bewisserungsmanagement erforderlich, um den Wasserverbrauch bei gleichzeitiger
Beibehaltung maximaler Pflanzenproduktivitit zu reduzieren. Die Bewisserungsplanung
basiert in der Regel auf die Messung von Bodenwassergehalten (Soil Water Content: SWC),
zum Beispiel mit Hilfe von Bodenfeuchtesensoren. Zur Simulation von SWC, Erntezustand
und hydrologischen Prozessen kommen derzeit Landoberflichenmodelle wie das Community
Land Model (CLM) hiufig zum Einsatz. Mit Hilfe von Datenassimilation (DA) kdnnen
unterschiedliche Messdaten in ein numerisches Modell integriert werden, um daraus optimale
Vorhersagen zu erzielen. Die Kombination von SWC-Messungen und CLM mit einer
sequenziellen Datenassimilationsmethode verspricht eine Verbesserung der Echtzeit-
Vorhersage des Bodenwassergehaltes und somit des Bewésserungsbedarfs. Eines der Ziele
dieser Doktorarbeit ist es, eine neue CLM-DA-basierte Echtzeit-
Bewisserungsplanungsmethode zu entwickeln und anhand eines realen Fallbeispiels, die
Nutzungsmoglichkeit von anderen SWC-Produkten (beispielsweise aus Cosmic-ray Neutron
Sensing) im Hinblick auf die Bewisserungsplanung zu iiberpriifen und die Unsicherheiten
der Bewisserungsmodellierung mit CLM zu analysieren.

Die erste Studie dieser Doktorarbeit umfasst eine Kampagne, in der eine Echtzeit-
Bewisserungsplanung in einem tropfbewisserten Zitrusfeld in Picassent, Spanien,
durchgefiihrt wurde. Gemessene SWC mit Bodensensoren und CLM-Modellierung wurden
mit einer sequenziellen Datenassimilationsmethode kombiniert, um das Bodenwasserdefizit
und den Bewisserungsbedarf in Echtzeit vorherzusagen. Dariiber hinaus wurden die
Wettervorhersagen des Global Forecast System als atmosphérische Antriebsdaten fiir das
CLM verwendet, um daraus Bodenwasserdefizit fiir die ndchsten Tage vorherzusagen und die
Bewisserung entsprechend zu planen. Die Leistung der Bewiésserungsplanung durch CLM-
DA wurde untersucht und mit anderen Ansétzen wie der FAO-Wasserbilanzmethode und den
Erfahrungen traditioneller Bauern verglichen. Der Vergleich basierte auf der aufgebrachten
Wassermenge, dem Wasserstress der Pflanzen und der Zitrusproduktion. Die Ergebnisse
deuten darauf hin, dass die CLM-DA-basierte Bewisserungsplanung im Vergleich zu
herkdmmlichen Planungsansitzen ein besseres Wassereinsparpotenzial aufweist. Trotz
weniger Bewisserungswasser zeigten die mit CLM-DA geplanten Zitrusfelder keinen
signifikanten Produktionsverlust sowie keinen Wasserstress. Ein weiteres Ergebnis dieser
Studie besteht darin, dass die Beobachtung des Bodenwassergehalts ein wichtiger Faktor fiir
die Schitzung der Bewésserungsmenge mit der CLM-DA-Methode darstellt.

In der zweiten Studie dieser Arbeit wurde das Potenzial der Cosmic-ray Neutron Sensing
(CRNS)-Methode fiir die Uberwachung des Bodenwassergehalts und der Planung der
Tropfenbewisserung untersucht. Die CRNS-Sonde kann den SWC der Wurzelzone,
basierend auf der gemessenen Neutronenintensitdt, fiir eine Flache bis zu mehreren Zehnern
von Hektaren bestimmen. Fiir den Standort Picassent in Spanien wurde der Footprint des
SWC durch Bodenprobenahmen im Feld und eine Kalibrierfunktion abgeleitet. Der gesamte
SWC fiir den CRNS-Footprint konnte gut charakterisiert werden, jedoch zeigten die
experimentellen Ergebnisse auch die Grenzen von CRNS bei der Erkennung von
Tropfwassereintrag. Wir fanden heraus, dass CRNS die SWC-Variation, welche durch die
Tropfenbewisserung verursacht wurde, nicht wiedergeben konnte. Um die Ergebnisse des
Feldexperiments besser interpretieren zu kdnnen, wurde mit dem Neutronentransportmodell
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URANOS die Neutronenreaktion auf die Tropfchenbewidsserung am CRNS-Standort
simuliert.  Sowohl die CRNS-Messungen als auch die Ergebnisse der
Neutronentransportsimulation deuten darauf hin, dass eine Standard-CRNS-Sonde dafiir nicht
ausreicht, die Neutronenreaktion auf die Tropfchenbewdsserung in unserem speziellen
Fallbeispiel zu erfassen. Griinde dafiir sind die geringen bewisserten Flichen, die kurze
Bewisserungszeit und die niedrigen Anderungen des Bodenwassergehaltes. Obwohl die
genaue Planung der Tropfchenbewédsserung mit einer herkommlichen CRNS-Sonde nicht
moglich ist, wiirde CRNS im trockeneren Fall oder bei intensiveren Bewidsserungsereignissen
besser funktionieren. Neue CRNS-Gerdte wie der Cosmic-ray Rover konnten eingesetzt
werden, um die Empfindlichkeit zu erh6hen und Tropfenbewisserungen auf kleineren Skalen
zu erkennen.

In der dritten Studie wurden die Unsicherheiten der Simulation des Bewdésserungsbedarfs
mittels eines Landoberflichenmodells untersucht. Der Mangel an Informationen {iber die
Bewisserungshaufigkeit, den Bewisserungsfaktor und die rdumlich-zeitliche Variation der
Bewisserungsintensititen beeinflusst die Bewisserungsschitzung durch
Landoberflichenmodelle, insbesondere fiir GroBanwendungen. Verschiedene
Modellsimulationsszenarien wurden verwendet um die Auswirkungen dieser Unsicherheiten
auf den simulierten Bewisserungsbedarf, die Landoberfldchenfliisse und den Wasserhaushalt
in Indien zu bewerten. Dies geschah mit dem Community Land Model fiir das Jahr 2010. Die
tiglich bewdsserten Flichen mit dem Standard-Bewisserungsfaktor hatten das ganze Jahr
iiber den hochsten Abfluss, die hochste Bewésserungs- und Evapotranspirationsraten. Der
modellierte Bewisserungsbedarf und der Oberflichenabfluss nahmen mit der
Bewisserungshdufigkeit und dem Bewdsserungsfaktor zu. Es zeigt sich, dass der
Bewisserungsfaktor kalibriert werden sollte, um Wasserverlust durch Abfluss zu vermeiden
und die Bewisserung flir den regionalen Malstab besser zu modellieren. Die
Landoberflachenfliisse, die durch das CLM-Modell, das als Input die saisonabhingigen
Bewisserungskarten nahm, modelliert wurden, zeigten einen dhnlichen Trend wie die durch
Fernerkundung  ermittelte Evapotranspiration. Die Verwendung saisonabhingiger
Bewisserungskarten flihrte zu einem hoheren Transpiration-Evapotranspiration-Verhaltnis im
Vormonsun im Vergleich zu anderen Bewdésserungsstrategien, was zu einer hdheren
Bewisserungseffizienz fithrt. Es zeigt sich, dass genauere rdumliche und =zeitliche
Informationen iiber die Bewisserung die Ergebnisse der Landoberflichenmodellierung
verbessern konnen. Allerdings sollte die Auflosung der Bewisserungsmodellierung erhéht
werden, um die Schitzung des Bodenwasserdefizits und des Bewisserungsbedarfs zu
verbessern.

Insgesamt zeigen die Ergebnisse, dass die CLM-DA-Methode einen vielversprechenden
Ansatz flir die Bewdsserungsplanung bietet, indem sie SWC-Messungen und
Landoberflachenmodell mit Datenassimilation kombiniert. Die Datenassimilation erweist
sich als eine vielversprechende Methode, um unterschiedliche Beobachtungsdaten in ein
dynamisches Modell zu integrieren und die Echtzeit-Vorhersage des Wasserdefizits zu
verbessern. SWC-Messungen von lokaler (z. B. FDR-Sensor), mittlerer (z. B. CRNS) bis
grofler (z. B. Fernerkundung) Skala sowie Modellierungsskalen von lokal bis grofl werden die
Anwendung der CLM-DA-Methode auf verschiedene Ebenen des
Bewisserungsmanagements erweitern. Genaue Informationen iiber die rdumlich-zeitliche
Bewisserungsintensitit sind notwendig, um eine bessere Modellierung und Charakterisierung
der Austauschfliisse zwischen dem Land und der Atmosphére und des Wasserhaushalts im
groflen MafBstab zu ermoglichen.



Chapter 1 : Introduction

Irrigated agriculture, which accounts for 40% of the food production, is important in securing
the food for an increasing world population (Playan and Mateos 2006; McLaughlin and
Kinzelbach 2015). Meanwhile irrigation is responsible for 70% of the fresh water
withdrawals (Vereecken et al. 2009). Given the scarcity of water resources especially in arid
and semi-arid areas, more efficient irrigation scheduling is needed to save water resources
and to fulfil crop requirements. Depending on the availability of water stress information, the
irrigation scheduling methods can be based on: soil water content (SWC) measurements,
evapotranspiration (ET) and/or plant water stress (e.g. stem water potential) (Evans et al.
1991; Jones 2004; Pardossi and Incrocci 2011). The SWC based irrigation scheduling
approach is normally applied on the basis of the difference between root-zone SWC and a

target SWC that is related to the crop type (Evans et al. 1991).

Many sensors can measure soil water content, such as Time Domain Transmissivity (TDT),
Frequency Domain Reflectometry (FDR) (Peters et al. 2013), tensiometers (Smajstrla and
Locascio 1996) and capacitance probes (Fares and Alva 2000). The advantages of SWC
sensors compared with the traditional gravimetric method are lower costs, less time intensive
and less invasive. However, SWC sensors are limited by their spatial representativeness. In
order to obtain SWC information at a larger scale, many TDT or FDR-probes can be
connected in a wireless sensor network, which can achieve SWC characterization at a larger
scale and in real-time (Vellidis et al. 2008; Bogena et al. 2010). Cosmic-ray Neutron Sensing
(CRNS) is a cosmic-ray neutron intensity based device that can monitor SWC at an
intermediate scale and non-invasively (Zreda et al. 2012). Remote sensing can also provide
regional SWC information, like the Soil Moisture and Ocean Salinity (SMOS) (Kerr et al.
2001) and Soil Moisture Active Passive (SMAP) missions (Entekhabi et al. 2010; El Sharif et
al. 2015).

The traditional irrigation scheduling method was often based on a simple water production
function or water balance model, while ignoring the complex interactions between soil and
vegetation (Barrett and Skogerboe 1980; Sammis et al. 2012). Land surface models such as
the Community Land Model (CLM) have been widely used in climate and hydrological
research to describe ecological and hydrological processes (Oleson et al. 2010). The
Community land model is the land model of the Community Earth System Model, and it can

simulate the soil water content of the root zone from a single point to the global scale (Oleson



et al. 2010; 2013). There have been several studies on irrigation modelling by a land surface
model at the regional and global scale (D61l and Siebert 2002; Lawston et al. 2017; Leng et al.
2013; Lu et al. 2015; Xie et al. 2017; Zeng et al. 2017). The performance of the irrigation
simulation by CLM4 and CLM4.5 and the interactions between climate and irrigated area
have been evaluated (Leng et al. 2013; Lu et al. 2015; Xie et al. 2017; Zeng et al. 2017). The
combination of a land surface model and weather forecast allows the simultaneous simulation
of ET and crop yield, as well as the irrigation water demand (Linker et al. 2016). Meanwhile
various new modelling, controlling and decision support methods were introduced into
irrigation scheduling (Shang and Mao 2006; Geerts et al. 2010); with help of multiple
mathematical optimization algorithms like simulated annealing (Brown et al. 2010), genetic
algorithms (Irmak and Kamble 2009; Wardlaw and Bhaktikul 2004) and computational

neural networks (Pulido-Calvo and Gutiérrez-Estrada 2009).

Sequential data assimilation (DA) is the optimal merging of model predictions on one hand
and measurement data on the other hand (Evensen 2003). Data assimilation can improve the
characterization of initial soil water contents (compared to measurement alone or model
simulations alone) and therefore also improve the irrigation scheduling (Han et al. 2016a). To
predict short or medium time scale soil water balance conditions, weather forecast data are
also important (Lorite et al. 2015). If weather forecast information is used as model forcing,
the dynamic model can provide a forecast of soil water content and crop states. Previous
study has shown that DA based combination of SWC information from sensors and
predictions by CLM allows calculating the future water deficit and the real-time automatic

control of irrigation (Han et al. 2016a).

However, the application of the CLM-DA based irrigation scheduling method for a real-
world case was not conducted and verified before, which will be one objective of this PhD
work. To assist crop monitoring and irrigation management at different spatial scales, the
CLM-DA based real-time irrigation scheduling scheme should be tested for smaller fields but
also over a larger domain. Two major components of the CLM-DA irrigation scheduling
system are real-time SWC observation and land surface modelling, which all can be

conducted at different spatial and temporal resolutions.

In order to have SWC observation at different spatial scales, a network of dielectric probes
(e.g. FDR) covering the field scale or the CRNS probe measuring at the intermediate scale

are needed. The CRNS technique is promising for irrigation management as the measurement



footprint is representative for the root-zone SWC at the intermediate scale of tens of hectares
(Zreda et al. 2012). If we can estimate soil water deficit at the intermediate scale using a
single sensor like CRNS, the costs associated with the construction of a large SWC network
can be avoided. The possibilities of using CRNS to schedule drip irrigation have not been

studied in a real world case before and need to be further explored.

Irrigation significantly changes the interaction between land and atmosphere, causing high
impact on the water and energy budget of the land surface (Ozdogan et al. 2010). The effect
of irrigation cannot be neglected when conducting land surface modelling over large areas
like India, which has large proportion of land being irrigated (Kumar 2003). Although there
has been plenty research on irrigation modelling by CLM and other land surface models,
most studies ignored the effect of temporal variable irrigation areas and irrigation intensity, as
well as uncertainty of soil texture (D61l and Siebert 2002; Leng et al. 2013; Lawston et al.
2017; Zeng et al. 2017). In India, the irrigation demand is strongly decided by the unevenly
distributed precipitation throughout the year. It is therefore very important to assess the
impact of the uncertainty of temporal variable irrigation areas (seasonal-variable irrigation

map) and frequency.
The objectives of this PhD thesis are to:

(1) introduce an alternative irrigation scheduling approach based on the CLM-DA method
with the ability of real-time control and integration of soil water content observations, and
evaluate the performance of this approach in real-time irrigation scheduling. This is done at a
drip irrigated field site with citrus trees near Picassent (Spain). The water saving capability of
the CLM-DA approach is compared with other irrigation scheduling methods like the FAO
(Food and Agriculture Organization) water balance method and a traditional approach used

by framers according their experience.

(2) explore the potential of using the CRNS technique to monitor water deficit and schedule
irrigation. This is also tested at the drip irrigated Picassent site. Moreover, to better interpret
the experimental data, neutron transport simulation was used to mimic the Picassent site and

simulate the effect of drip irrigation on the cosmic-ray neutron counts.

(3) investigate the uncertainties associated with calculating irrigation by a land surface model,
which are caused by uncertainty concerning the temporal variability of irrigation intensity,

irrigation frequency and irrigation factor (related the target soil water content when irrigation



stops). The influence of those factors on land surface fluxes and water balance modelling are

further explored over a large model domain over India.

Chapter 2 gives an overview of the land surface model and data assimilation method being
used in our work. Furthermore, this chapter introduces the basic knowledge of CRNS

observation, calibration, as well as the neutron transport modelling.

In chapter 3 we apply the method integrating SWC measurements and CLM using sequential
DA to improve the prediction of soil water status and design the real-time drip irrigation
scheduling strategies for the citrus fields in Picassent, Spain. SWC measured by FDR was
assimilated into CLM by the Local Ensemble Transform Kalman Filter (LETKF) to improve
the characterization of the soil moisture condition. Atmospheric input data from the Global
Forecast System (GFS) were used to force CLM to predict the short-term evolution of the
SWC. The irrigation amount was then calculated on the basis of the difference between
predicted and targeted root zone SWC. During the real-time irrigation campaigns in 2015 and
2016, there were 6 fields irrigated according the CLM-DA approach, 2 further fields
according the FAO water balance method and also 2 fields according the farmers experience.
The corresponding amount of irrigation water for each citrus field was applied by SCADA
(supervisory control and data acquisition system). After the harvest, the efficiency of the
different irrigation scheduling methods was compared in terms of the overall applied

irrigation amount, measured stem water potential, deep root zone SWC and citrus yield.

Chapter 4 evaluates the measurement precision of the CRNS at the Picassent drip-irrigated
field and evaluates whether it is sufficient to support drip irrigation management. The work
relies on both field experimentation and modelling of neutron intensity. A soil sampling was
carried out to determine the relationship between footprint SWC and neutron intensity
measured by the CRNS probe. Also multiple FDR-sensors were installed in the CRNS-
footprint to be used as verification. The neutron transfer simulation model URANOS (Ultra
Rapid Neutron-Only Simulation) was used to model the neutron response for the drip
irrigated citrus fields and to explore the potential of the CRNS method to detect drip

irrigation events.

Chapter 5 investigates how the temporal variation of irrigated areas (as reflected in an
irrigation map), irrigation frequency and irrigation factor affect calculations with a land
surface model in terms of irrigation and water flux modelling. By using the CLM model, the

irrigation demand and land-atmosphere exchange fluxes over the Indian model domain were
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reconstructed for the year of 2010 at a resolution of 10 km % 10km. The uncertainties with
respect to time-variable irrigation area, irrigation frequency and irrigation factor were
explored by different simulation scenarios. The results in terms of irrigation and land surface
flux modelling for different simulation scenarios were then compared and validated by large-

scale remote sensing data.

Finally, chapter 6 summarizes the main results and provides an outlook for future research.



Chapter 2 : Theory

2.1 Community Land Model

The Community Land Model (CLM) is the land surface model of the Community Earth
System Model (CESM) developed by the American National Center for Atmospheric
Research. CLM describes the ecological and hydrological processes relevant for irrigation
optimization and the interaction between the atmospheric boundary layer, soil and vegetation,
and is widely used in climate, hydrology and other environmental research (Oleson et al.
2010; 2013). The CLM has been constantly updated with new versions, with version 4.0 and
4.5 being used in this thesis. The version 4.0 of CLM was released in 2010 to include the
biogeochemistry components in the model including the coupled carbon and nitrogen cycles
(Oleson et al. 2010). The update from version 4.0 to version 4.5 in 2013 included
modifications regarding the representation of canopy process, lakes, snow cover and

hydraulic properties of frozen soil (Oleson et al. 2013).

Land surface heterogeneity is represented in CLM by 3 levels of sub-grid hierarchy including
land units (urban, glacier, lake, wetland and vegetated), columns and 16 plant functional
types (PFT). The plant functional types are: evergreen needle leaf (boreal or temperate),
deciduous needle leaf (boreal), evergreen broadleaf (temperate or tropical), deciduous
broadleaf (boreal, temperate or tropical), deciduous shrub (boreal, temperate), evergreen
shrub (temperate), grass (C3 Artic, C3 and C4), and crop (C3 rainfed, C3 irrigated) (Oleson
et al. 2010). The multiple columns within one land unit make it possible to divide one land

unit into vegetated irrigated column and non-irrigated bare soil column.

In CLM, soil water storage and vertical water fluxes in the soil are governed by different
processes, including rainfall infiltration, surface and subsurface runoff, root water uptake
(canopy transpiration), and interaction with the below-lying aquifer (Oleson et al. 2010). The
vertical soil profile in CLM is divided into 15 layers, while only for the upper 10 layers soil
water content is calculated. The thickness of the CLM layers varies between 1.75 cm for the

first layer and 1.51m for the 10" layer (Oleson et al. 2010).

The most important hydrology part in CLM for irrigation management is the calculation of

soil water content. A modified Richards equation was used to simulate the soil water flow:

%_i[ki (W)]_Q 2.1
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where ; is the volumetric soil water content (cm/cm?®) in layer i, t is time, ¥; (mm) is the
soil matric potential, k; (mm/s) is hydraulic conductivity, z; represents the soil depth, Y
(mm) is the equilibrium soil matric potential of the i™ soil layer, and Q is the soil water

removed by root water uptake (Decker and Zeng 2009; Oleson et al. 2013).

Soil hydraulic parameters like hydraulic conductivity are calculated from the Clapp-
Hornberger pedotransfer function (Clapp and Hornberger 1978; Cosby et al. 1984) using sand
and clay content, as well as organic properties of each soil layer as input (Lawrence and
Slater 2008; Oleson et al. 2010):

1

— 1_fom,i fom,i_fp,i -
ks,i - (1 - fp,i) [0.0070556.10(‘0-834+1-53fsd,i) + Ksom + fp,iks,om (2-2)

where kg; (mm/s) is the saturated hydraulic conductivity; fgq; and f,p, ; are the percentages
(%) of sand and organic matter; the fraction f,,; is zero when f;r, ; is less than 0.5, otherwise
foi = 1101 X forn i (fomi — 0.5)%3% 5 kgom is the saturated hydraulic conductivity of

organic matter (Oleson et al. 2013).

Soil water content is also strongly determined by evapotranspiration (Q in Equation 2.1). The
simulation of land-atmosphere exchange fluxes is based on Monin-Obukhov similarity theory
(Oleson et al. 2013). The evapotranspiration from the vegetation column was divided into
three parts: ground evaporation, interception evaporation and vegetation transpiration. For
each column, the canopy evaporation and transpiration are the sum from all PFTs sharing the
same soil column. For the vegetated soil column (without canopy interception water), the
evapotranspiration includes the water vapor flux from vegetation E,, and from ground soil E

(Oleson et al. 2013):

Patm(@s=dat)
Ev — _ Patm(ds—9sat (23)
Ttotal
Es - _ PatmBsoil (ds—dsoil) (24)
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where 7iota1 (S/m) is the total aerodynamic resistance to water vapor transfer from the canopy
to canopy air including contributions from leaf boundary layer and stomata; 14y, (s/m) is the
aerodynamic resistance to water vapor transfer between the ground and canopy air; Hjger
(s/m) is the resistance from plant litter layer; qST;t (kg/kg) is the saturated specific humidity at

the vegetation temperature Ty; qs (kg/kg) is the canopy specific humidity; gg.;; (kg/kg) is the
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specific humidity of soil; S is an empirical function of soil water content (Oleson et al.

2013).

The difference between the predicted soil water content and the target soil water content is
the water deficit, and irrigation scheduling is planned on the basis of the calculated water
deficit. In CLM, the target soil water content can be defined for the irrigation needs of

different crops (Oleson et al. 2010):
gtarget =1 —-0.7) Omin + 0.7 - Orpax (2.5

where 0,,;, is the minimum needed soil water content to sustain completely open stomata and
Omax 1s soil saturation. They are defined separately for each soil layer. The empirical
parameter 0.7 was set in CLM to match the calculated global irrigation demand for the year
2000 with the observation data (Oleson et al. 2010).

The irrigation amount (Wyesicit) 1S calculated by the integrated water deficit over the root

zone (Oleson et al. 2010):
Wieficit = Z{V R;- max(etarget -0, O) (2.6)

where 0; is the soil water content for layer i, R; is the root fraction for that layer, and N is the
number of CLM-layers with roots, which are dependent on the plant functional type (PFT) in
CLM.

exp(—1aZp,i—1)+exp (-TpZpi-1) .
' ' < .
05 [ —exp(~1qZp ;) +exp (=75 Zp,1) ] 1 =i < Neysoi

0.5[exp(—7pZpi-1) + €xp (=1Zpi-1)] i = Meysoi

2.7)

where Z, ; (m) is the depth from the surface to the interface between soil layers i and i + 1;

1, and 1y, are root distribution parameters for different plants (Zeng 2001).

2.2 Data assimilation

Data assimilation (DA) combines direct and/or indirect measurements and dynamic models to
get optimal estimates of model state variables (Reichle 2008). In this PhD work, data
assimilation is applied to use available soil water content data to correct predictions by CLM

in a probabilistic manner. It updates the current system states and should give better estimates



of future system states, together with a characterization of the uncertainty of the estimates

(Evensen 2003).

Ensemble Kalman Filter (EnKF) is the Monte Carlo approximation of the Kalman filter that
estimates state variables through a forecast and analysis process, where the model covariance
matrix is estimated from a limited number of ensemble members which avoids the very
expensive explicit computation of the model covariance matrix (Evensen 2003). In the work
of chapter 3, the Local Ensemble Transform Kalman Filter (LETKF) is used, which is a
variant of the Ensemble Kalman Filter. It has been widely used by scientists in land surface
hydrology and meteorology (Hunt et al. 2007; Miyoshi et al. 2007; Han et al. 2014a; Han et
al. 2015). More details of LETKF can be found in Hunt et al. (2007).

Compared with traditional ensemble Kalman filters, LETKF is more efficient. In LETKF, the
global state and observation matrices are only prepared once in a forecast step, then each
model grid is updated separately along with the local analysis error covariance matrix,
avoiding the calculation of a large error covariance matrix (Han et al. 2014a). By dividing the
global model grid into separate local patches, each grid cell of the model is updated

separately which can be easily exploited in parallel computations (Miyoshi et al. 2007).

In the global operation step of LETKF, two global matrices XP and Y® are constructed based

on soil moisture modeled by CLM for each grid cell.

XP = [xP—xP, .., xb — "] (2.8)
Yo = [y —9° .., ym — 7] (2.9)
yP = HExP) (2.10)

where x? ... x¥ contain the modeled states for the M ensemble members, X is the ensemble

mean; yP ... yi) are vectors containing the model states at the observation locations for each
of the M ensemble members, §° is the vector of the corresponding ensemble means and H is
the observation operator that maps between the model space and the observation space, which
is identity matrix in our case because of the direct observation. The model state vector x is

constructed as:
xP =[6,,6; ...0,]" (2.11)

where 04, 0, ... 0,4 are modeled soil moisture contents for the ten CLM layers.
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In the local analysis step, the analysis error covariance matrix P? is calculated as:
pa — b)TR-1yb] -1
P _[(M—1)1+(Y) R Y] 2.12)

where R is the observation error matrix, I is the identity matrix.

The perturbations matrix W® and analysis mean W¢ are calculated as:
W = [(M — 1)P4]/? (2.13)
we = PA(YP) R1(y0 — §°) (2.14)

where y° is the observation vector containing soil moisture measured by the FDR sensors and

for the different layers.

Finally the new analysis matrix X? that contains the updated ensemble members in model

space is obtained by:
X2 = %P + XP(W? + w?) (2.15)

Section 2.1 and 2.2 are adopted from Li et al. (2018).

2.3 Cosmic-ray Neutron Sensing

In chapter 4, the measurement precision of Cosmic-ray Neutron Sensing (CRNS) was tested
in a drip-irrigated field in order to explore whether it is sufficient to support drip irrigation
management. Cosmic radiation originates in outer space and penetrates the Earth atmosphere.
This interaction creates high-energy neutrons which further collide with atoms in the air, soil,
and vegetation to produce medium-energy neutrons (Zreda et al. 2012). Those neutrons can
be efficiently moderated towards lower energies by nuclear collisions with hydrogen.
Therefore, the intensity of medium-energy neutrons is an indication for the amount of
hydrogen atoms at the land surface and its temporal variation. The Cosmic-ray Neutron
Sensing probe can be used to measure soil water content up to depths of 80 cm and with a

footprint radius ranging from 130 m to 240 m at sea level (Kohli et al. 2015)

The CRNS probe needs to be calibrated with soil samples during a field campaign while
neutron intensity is simultaneously measured by the CRNS probe. The so-called No method
was developed by Desilets et al. (2010) to estimate soil water content 8, in the CRNS

footprint as function of the neutron count rate Ny, through a simple calibration function. To
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calibrate the Ny parameter, a single field calibration campaign was conducted as described in
chapter 4.

Npi -1
HV = (aO ' pbd) (NLh - al) - (aZ 'pbd) - glat - 90rg (2-16)

0

where No stands for the neutron intensity over dry soil at a specific test site and needs to be
calibrated once; a;=0.0808, a;=0.372 and a,=0.115 are constant fitting parameters. ppq is
soil bulk density (g/cm®) averaged from all the soil samples taken on the calibration day (1.3
g/cm®), it was calculated with an iterative method along with the weighting of soil water
content for each layer. ), is the volumetric lattice water (cm/cm®) and Borg is soil organic

water equivalent (cm’/cm?).

The neutron transfer model called Ultra Rapid Neutron-Only Simulation (URANOS) was
used to model the neutron response to the drip irrigated citrus fields in Picassent and to
explore the potential of the CRNS method to detect drip irrigation events. The URANOS
model simulates neutron interactions in a Monte Carlo framework, and was originally aimed
for applications in nuclear physics (Kohli et al. 2018). Recently it has been used to model the
interaction of cosmic-ray neutrons with air, soil and vegetation in order to understand neutron

intensity measured by CRNS probe (K&hli et al. 2015).

Section 2.3 is adopted from “Li et al., 2019. Can drip irrigation be scheduled with Cosmic-
ray Neutron Sensing? Vadose Zone Journal, 18(1). doi: 10.2136/vzj2019.05.0053™.



Chapter 3 : Evaluation of an operational real-time irrigation
scheduling scheme for drip irrigated citrus fields in Picassent,
Spain

*adapted from: Li, D., Hendricks Franssen, H.-J., Han, X., Jiménez-Bello, M. A., Alzamora, F. M.,
and Vereecken, H., 2018. Evaluation of an operational real-time irrigation scheduling scheme for drip
irrigated citrus fields in Picassent, Spain. Agricultural Water Management, 208, 465-477.
https://doi.org/10.1016/j.agwat.2018.06.022

3.1 Introduction

3.1.1 Water scarcity and irrigation scheduling

The world’s population has exceeded 7 billion and will continue to increase with a high rate
(https://en.wikipedia.org/wiki/World_population). To feed the increasing population, our
agriculture must produce more food. Irrigated agriculture accounts for 40% of food
production, and 70% of fresh water withdrawals are used by irrigation (Vereecken et al. 2009;
Playan and Mateos 2006). Irrigation is important for the food security of the world
(McLaughlin and Kinzelbach 2015). Given climate change and increased groundwater
pollution, we are facing a global water crisis and stronger constraints on water resources
(Vorosmarty et al. 2000; Iglesias and Garrote 2015). Groundwater recharge in semi-arid areas
is usually limited, resulting in unsustainable groundwater use for irrigation and groundwater
depletion (Scanlon et al. 2012). Therefore, efficient water use by irrigation scheduling is

needed to allocate irrigation water rationally.

Irrigation scheduling aims to minimize water use while maintaining the agricultural
production (Evans et al. 1991). Scheduling efforts can have a long-term focus or short-term
focus, which includes real-time scheduling (Ticlavilca et al. 2013). Real-time scheduling of
irrigation is usually based on calculated daily water allocation (Pham et al., 2013). With
irrigation scheduling we decide when and how much to irrigate. When to irrigate is related to
the sensitivity of crops to water stress, which determines the threshold when yield and quality
reduction occur under water shortage. How much should be irrigated depends on the water
deficit between the current and targeted water status (Evans et al. 1991). In order to make
decisions regarding irrigation scheduling, the water stress condition needs to be known.
Depending on the type of water stress information available, the irrigation scheduling

approaches can be divided into: soil moisture measurements based, evapotranspiration (ET)

16



based and plant water stress based (Evans et al. 1991; Jones 2004; Pardossi and Incrocci

2011).

Many devices can give information on soil moisture status including dielectric sensors using
Time Domain Transmissivity (TDT) and Frequency Domain Reflectometry (FDR) (Peters et
al. 2013), tensiometers (Smajstrla and Locascio 1996), capacitance probes (Fares and Alva
2000), neutron probes and cosmic-ray probes (Zreda et al. 2012). The combination of soil
moisture information from sensors and predictions by a given model allows to calculate the
future water deficit (Blonquist et al. 2006). Evapotranspiration is defined as the sum of
evaporation from the soil surface and transpiration from the crop (Allen et al. 1998). The ET
based irrigation scheduling calculates the irrigated water amount by the difference between
daily actual ET and precipitation (Davis and Dukes 2010). Water stress information from
crops can be obtained by different indicators like sap flow (Fernandez et al. 2001), stem
water potential (Choné et al. 2001; Ferndndez and Cuevas 2010), trunk diameter fluctuation
(Moriana et al. 2010), leaf stomata pressure, canopy temperature (Clawson and Blad 1982)

and crop water stress index (Moran et al. 1994).

3.1.2 Drip Irrigation scheduling for citrus

Compared with all the major types of surface irrigation (furrow, flood, or large scale sprinkler
irrigation), drip irrigation is seen as the most water-efficient and precise method (Provenzano
2007). Lots of irrigation scheduling methods were tested on drip irrigated fields on the base
of measuring soil or plant water status and evapotranspiration (Dabach et al. 2013). For the
drip irrigation of citrus trees, there are plenty of different indicators of plant water stress like
stem water potential and soil capacitance, and also several ways to determine
evapotranspiration like the FAO method, lysimeter and eddy covariance method (Jiménez-
Bello 2015). Stem water potential (Sdoodee and Somjun 2008) and daily trunk shrinkage
(Velez et al. 2007) were used to schedule irrigation for citrus orchards world widely. Also the
water balance method for drip irrigation scheduling is popular. For example, Sammis et al.

(2012) used a two-dimensional soil water balance model for drip irrigation scheduling.

The traditional way of drip irrigation scheduling was often based on a simple water
production function or water balance model, while ignoring the complex interaction between
soil and vegetation (Barrett and Skogerboe 1980). A new development is the use of complex
models and weather data, combined with mathematical optimization methods (Shang and

Mao 2006). Advanced modelling and programing technology offers a new possibility to
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calculate soil water status. Various controlling and decision support methods were introduced
into irrigation scheduling. Simulated annealing (Brown et al. 2010), genetic algorithms
(Irmak and Kamble 2009; Wardlaw and Bhaktikul 2004) and computational neural networks
(Pulido-Calvo and Gutiérrez-Estrada 2009) were used to support decisions concerning the
irrigated water amount. To predict short or medium scale soil water balance conditions,

weather forecast data are also important (Lorite et al. 2015; De Jager and Kennedy, 1996).

In this work, the Community Land Model (CLM) (Oleson et al. 2010) is used to estimate soil
and crop water states. Data assimilation (DA) combines direct and/or indirect measurements
and dynamic models to get optimal estimates of model states (Reichle 2008). Han et al.
(2016a) already illustrated the potential of sequential DA to improve irrigation scheduling
with CLM model predictions. In the past already hydrological models like HYDRUS
(Autovino et al. 2018) and simpler water balance models (Rallo et al. 2017) were used for
irrigation scheduling, but not a land surface model that couples the water and energy cycles.
The use of data assimilation in this context is also a novel contribution for the irrigation

scheduling of citrus or other fruit trees.

The main objective of this paper is to provide a new approach for irrigation scheduling by
introducing the combination of data assimilation and land surface modelling, with the
possibility of real-time on-line control and the possibility to ingest different types of
measurement data. The CLM-DA method combines model predictions by a land surface
model, weather prediction and soil moisture data measured by capacitance probes. We
illustrate our approach for the near real-time irrigation scheduling of citrus trees near
Picassent, Valencia (Spain). During the irrigation campaign for the Picassent site from July to
October in 2015 and June to October in 2016, three different irrigation scheduling methods
were tested for 10 citrus fields, including the CLM-DA method proposed in this paper, the
FAO water balance model and a traditional method based on farmer’s experience. The CLM-
DA method combines model predictions by a land surface model, weather prediction and soil
moisture data measured by capacitance probes. These information sources are optimally
combined using sequential data assimilation, to predict drought stress for the next days and
schedule irrigation accordingly. The applied irrigation amounts were measured by a water
meter, and then divided by the irrigation area to get the water depth. Stem water potential and

citrus production indicating the possible water stress were also measured.



3.2 Materials and methods

3.2.1 Research site and experimental set-up

The research site is located near Picassent in Spain (39.38° N, 0.47° E), in a semi-arid region.
Precipitation is concentrated in spring, autumn and winter, and the yearly average
precipitation amount is 453 mm, with an annual average daily maximum temperature of
223 °C and an annual average daily minimum temperature of 134 °C
(https://en.wikipedia.org/wiki/Valencia#Climate). The crop growing at the test site is citrus,
with major management procedures like fertilization and weeding carried out by the orchard
owners. Although the citrus varieties differ between the fields, there are no significant
differences in crop management, fertilization and tree ages. Information on field-specific tree
ages were lacking, but all the trees were mature (older than 15 years) and in full-production
stage. As precipitation during the main growing period of citrus in summer is rare, the water
demand of the citrus trees almost entirely depends on irrigation. Drip irrigation is being used
in these citrus tree fields, with two pipelines and 8~10 emitters for each tree. Detailed
information about the types of citrus plant, spacing, and vegetative growth character can be

found in Table 3.1.

Within the area of Picassent, the meteorology observatory of IVIA (Instituto Valenciano de
Investigaciones Agrarias) provides meteorological data (http://riegos.ivia.es/). Twelve FDR
probes were installed in the context of the EU-project AGADAPT since 2013, spreading over
the irrigation plots (see Figure 3.1), measuring soil water content at four depths (10 cm, 30
cm, 50 cm, and 70 cm). During June and July 2015, 12 more FDR probes were installed in
the field to enhance the observation density. The FDR probes were installed close to drip
emitter and a representative tree of average size in the orchard. The FDR soil water content
measurements (10 cm and 30 cm) in the irrigated area were used in the DA system for
irrigation scheduling, because most roots of citrus trees are located in the top 50 cm. FDR
measurements at 50 cm and 70 cm depth were later used as independent verification data for
possible water depletion. During the irrigation period, the stem water potential was also

measured for each field, covering the different irrigation scheduling methods.

Three different irrigation scheduling schemes were compared for this site: irrigation
scheduling according (i) CLM-DA calculation (CLM fields), (ii) the FAO water balance

model (FAO fields) and (iii) farmers’ experiences (Farmer fields). The irrigation scheduling



schemes were assigned to different fields in the following way: (1) CLM-DA method: fields
CLM-A, CLM-B, CLM-C, CLM-D, CLM-E and CLM-F; (2) FAO water balance: fields
FAO-A, FAO-B; (3) farmers’ experience: fields Farmer-A, Farmer-B. In June drip irrigation
was applied on Monday, Tuesday, Wednesday, Friday and Saturday night (five times per
week). In July and August also on Thursday there was irrigation. From September and
October onwards, depending on the weather and fruit maturation process, irrigation
frequency was reduced and finally stopped. All the experimental fields share the same
irrigation frequency while only CLM-DA and FAO fields got suggested irrigation time from
the calculations of different methods. The irrigation at the Farmer fields was conducted
according the farmer's experience. The irrigation time of Farmer fields ranged from 1 to 2

hours depending on the flow speed and technician’s evaluation of water demand for trees.

For the CLM-DA method, there are six fields involved in the irrigation scheduling in 2015
and 2016. Compared with the experiment of 2015, the data assimilation and irrigation
controlling process of 2016 were slightly modified to avoid problems which occurred in 2015.
As the applied irrigation water amounts in 2015 were affected by the variable flow velocity
of the drip line, in 2016 the flow velocity data were retrieved every 3 days, which allowed
more accurate irrigation duration so that the truly applied irrigation amount was closer to the
scheduled irrigation amount. The needed irrigation amount (which was converted in an
irrigation duration) was sent to the technicians in Valencia twice per week to do the real-time
control of drip irrigation (period July 7 — October 31 2015). In 2016, the irrigation scheduling
was from June 1 to October 31 and the corresponding irrigation time was applied directly
through SCADA (Supervisory Control And Data Acquisition system) for each CLM-DA
field. In 2016 the truly applied irrigation amounts were available shortly after the irrigation

was done.
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Table 3.1 The types of citrus tree, spacing, and vegetative growth characters for the different fields
involved in the study (CLM-DA, FAO and Farmer)

Fields Area (m?)  Citrus variety Ground Cover distl:l(:v‘:’: (m) distZ:Ez (m) ?)l::t:el: Q(/h)
CLM-A 8210 Valencia Late 0.33 35 3.5 8 2.5
CLM-B 12375 Hernandina 0.70 4.5 5 10 35
CLM-C 4502 Clemenules 0.67 4.5 5 10 332
CLM-D 3031 Clemenules 0.48 5 5 12 5.6
CLM-E 9573 Navelina 0.45 6 5 10 1.9
CLM-F 8978 Hernanadina 0.46 6 4 10 3.7
FAO-A 3288 Lane Late 0.49 4.5 35 10 39
FAO-B 5340 Orogrande 0.60 5 5 10 4.5

Farmer-A 10583 Orogrande 0.60 5 5 10 4.4
Farmer-B 8670 Hernandina 0.60 5 5 10 2.3

FAO-B
Farmer-A i

Farmer-B

Figure 3.1 The distribution of the fields (with their numbers listed) and indication of the irrigation
scheduling method applied (red fields: CLM, green fields: FAO, purple fields: Farmer) for each of the
fields. The blue dots and red triangles are symbols of FDR probes, which were installed in the
irrigated and not irrigated area.
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3.2.2 FAO Soil water balance based irrigation scheduling

The FAOS56 procedure uses the following basic water balance model (Rallo et al. 2011):
DizDi_1+ETC—Pi—IL'+Ri+DPi (31)

where D; is the water depletion at day i, D;_4 is water depletion at the previous day i-1, ET,
is crop evapotranspiration, P; is precipitation, I; is irrigation, R; is net runoff and DP; is deep
percolation. Ideally, runoff can be neglected in flat terrain, and deep percolation is set to zero

to avoid water losses (Davis and Dukes 2010).

The actual crop evapotranspiration ( ETc ) can be calculated from the reference

evapotranspiration (ET,) and the crop coefficient (K¢).
ETC = KC " ETO (32)

Reference evapotranspiration is calculated by the FAO Penmann-Monteith method (Allen et
al. 1998). The crop coefficient may change as function of the vegetation development and the
evolution of ground cover, the values of which are available from field experiments or remote

sensing (Bausch 1995).

For the FAO water balance method applied in our fields, the irrigation amount was set equal
to the water depletion at previous day (D;), and the K. was taken to calculate ET; (Castel

2000):
K¢ = Kcavg' femonth (33
Kcavg =0.274+ GC- 0.005 (20% < GC < 70%) 34

where K,y depends on ground cover GC and the feyon is @ correction factor which
depends on the month of year and is used by the Irrigation Advisory System of Valencia for

fruit trees (http://riegos.ivia.es/).
3.2.3 Real-time drip irrigation scheduling with CLM and data assimilation

3.2.3(a) Land surface model

The Community land model (CLM4.0) is the land surface model of the Community Earth
System Model (CESM1.1.2), which describes the ecological and hydrological processes

relevant for irrigation optimization and the interaction between the atmospheric boundary
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layer, soil and vegetation, and is widely used in climate, hydrology and other environmental
research (Oleson et al. 2010). A modified Richards equation and Monin-Obukhov similarity
theory are used to simulate the soil water flow and land-atmosphere exchange fluxes. The
land surface heterogeneity of CLM is represented by 3 levels of sub-grid hierarchy including
land units (urban, glacier, lake, wetland and vegetated), columns and 16 plant functional

types (PFT) (Oleson et al., 2010).

In this study, in order to use the irrigation model in CLM, each grid cell has two columns: a
bare soil non-irrigated column (67 %) and a vegetated irrigated column (33 %). The plant
functional type chosen to represent the citrus tree in our model is evergreen broadleaf tree,
which has many similarities with citrus trees. The root distribution parameters were modified
as described by Han et al. (2016a) so that most roots are located within 50 cm soil depth,
which is in correspondence with the shallow rooting of irrigated citrus trees as detected by

experimental data.

The vertical soil profile in CLM is divided into 15 layers, while only for the upper 10 layers
soil water content is calculated. Only these 10 layers will be considered for state updating by
data assimilation. The thickness of the CLM layers varies between 1.75 cm for the first layer
and 1.51 m for the 10" layer (Han et al. 2014a). We took the bottom of the third layer (9.06
cm depth) and 5th layer (28.91 cm depth) as the counterparts for FDR measurements at 10
cm and 30 cm depth.

In CLM, soil hydraulic parameters and soil matric potential are calculated from the sand and
clay fractions. In-situ measurement data of soil texture were used for the site (silty clay: silt
33 %, clay 32 % and sand 35 %). The soil hydraulic parameters like saturated hydraulic
conductivity are calculated from the Clapp-Hornberger pedotransfer function using as input

sand and clay content, as well as organic properties of each soil layer.

3.2.3(b) Data assimilation

Data assimilation is applied in this work to use available soil moisture data to correct
predictions by the Land Surface Model CLM in a probabilistic manner. It updates the current
system states and should give better estimates of future system states, together with a
characterization of the uncertainty of the estimates (Evensen 2003). In this work, the Local
Ensemble Transform Kalman Filter (LETKF) is used, which is a deterministic variant of the

Ensemble Kalman Filter. It has been widely used by scientists in land surface hydrology and
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meteorology (Hunt et al. 2007; Miyoshi et al. 2007; Han et al. 2014a; 2015). More detailed
description of LETKF can be found in chapter 2.

In LETKF, localization implementation implies that each model grid cell is only updated by
the closest FDR sensor observation. Ensemble inflation is also used in LETKF to prevent
filter divergence (Han et al. 2014a). In this work, only the model grid cells with FDR
observations were updated by data assimilation while soil and vegetation parameters are pre-
defined and taken from in-situ measurements and LAI data respectively. The LAI values
were calculated based on the ground coverage and an empirical function derived from field
measurements. More details of the data assimilation with LETKF and CLM can be found in

Han et al (2015; 2016a).

LAL = —1.3 - log( 22 (3.5)

3.2.3(c) CLM-DA based irrigation scheduling

After the data assimilation analysis, the updated initial model states in the form of soil water
content values are used as input for predicting the evolution of soil water content values for
the next 3 or 4 days. This is done for each of the model ensemble members so that also the
uncertainty of the predictions can be characterized. These predictions use weather forecasts
as input. On the other hand, a target soil water status is defined to sustain crop growth and
yield. The difference between the predicted soil water status and the target soil water status is
the water deficit, and irrigation scheduling is planned on the basis of the calculated water
deficit. In CLM, the target soil water content can be defined for the irrigation needs of

different crops (Oleson et al. 2010):
etarget =(1=0.7) Onin + 0.7 - Onax (3.6)

where 0, is the minimum needed soil water content to sustain completely open stomata and
Omax 1s soil saturation. They are defined separately for each soil layer. The empirical
parameter 0.7 was set in CLM to match the calculated global irrigation demand for the year
2000 with the observation data (Oleson et al. 2010).

The irrigation amount (Wyesicit) 1S calculated by the integrated water deficit over the root

zone (Oleson et al. 2010):

Wieficit = Z{V R;- max(etarget -0, O) 3.7)
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where 0; is the soil water content for layer i, R; is the root fraction for that layer, and NV is the
number of CLM-layers with roots, which are dependent on the plant functional type (PFT) in
CLM.

exp(~TaZn,i-1)+exp (~TpZn,i-1) .
' ' < .
0.5 [ —exp(—razh‘i)+exp (="bZn,i) ] 1=si< Nlevsm

O'S[exp(_rbzh,i—l) + exp (_szh,i—l)] [ = Nieysoi

where Zj ; (m) is the depth from the surface to the interface between soil layers i and i + 1,

1, and 1, (both are 8.992 for citrus) are root distribution parameters for different plants (Zeng

2001).

Forecasted weather data were used as input to the land surface model for soil water status
predictions. The T1534 Semi-Lagrangian grid weather forecast data (0.25") were downloaded
from the Global Forecast System (GFS) product inventory twice per week
(http://www.nco.ncep.noaa.gov/pmb/products/gfs/). For land surface model predictions and
irrigation scheduling from Monday to Wednesday the GFS-forecast from Sunday was used,
whereas for land surface model predictions and irrigation scheduling from Thursday to
Sunday the forecast from Wednesday was taken. One GFS-pixel covers our complete
simulation domain and was therefore applied to all CLM grid cells. The original GFS data
were interpolated from 3-hour intervals to 1-hour intervals. In the irrigation scheduling
campaign of 2016, irrigation was not applied if the forecasted precipitation amount was larger

than 5 mm.

3.2.4 Stem water potential, deep soil water content measurements and production

data

We had three independent data sources to evaluate water stress by the trees: (i) stem water
potential measurements, (ii) deep soil water content measurements, and (iii) production data.

These sources of information will be discussed in addition.

During the irrigation campaign, stem water potential (SWP) was measured with pressure
chamber equipment (Model 600 Pressure Chamber, PMS Instrument Company, Albahy, USA)
by following the method descried by Turner (1981). Even though the stem water potential has
no direct quantitative relation with the soil water content, it is a sensitive indicator of crop
water stress and can be used to evaluate the water deficit condition of the fields. In the

irrigation periods, stem water potential was measured every 2 weeks at noon with a sample of
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5 trees per field and 4 leaves per tree. They were chosen from at least three different emitter
lines and always including the tree where the FDR probe was placed. After 2 hours in the
plastic bag, leaf water potential will be equal to the stem water potential. Then the leaves
were sealed into the air chamber with a part of petiole exposed outside. The increased air
pressure that makes water coming out from the cut surface of petiole is considered as the
water tension within the leaves. The measured value of water potential is normally negative,
which symbolizes the level of water stress and water deficit of the plants. Low stem water
potential may cause the closure of stomata, the commonly used threshold is -1.5 MPa

(Blonquist et al. 2006).

Soil water content measured by FDR sensors at 50 cm and 70 cm depth was not used in the
data assimilation, but was used as a further indicator of possible water stress. The drop of
deep soil water content in the irrigation season is linked to the possibility that not enough drip

irrigation is applied.

The fruit production data for each field were also collected at the end of the season to support
the evaluation. The production is the commercial yield that farmers sold to cooperatives.
Unfortunately, not for all fields production data could be obtained as not all farmers collected
this information. Reduced fruit production can be another indicator of the existence of water
stress during the past growing season, but there are other possible explanations for a

relatively small fruit production not related to drought stress.

3.2.5 Statistical analysis of the performance of the irrigation scheduling methods

The predictions by the models were evaluated by the Root Mean Square Error (RMSE)

according to:

RMSE = |2t=1fm=69)% (3.9)
n

where 6,, is the CLM modeled soil water content, 6, soil water content measured by FDR

probes and n is the number of time steps within the modelling period.

In order to explore the efficiency of the CLM-DA based irrigation, the irrigation amounts for
the different fields (CLM-DA method, FAO-method and Farmer approach) were compared.
The applied water volume was divided by the area (m?) of each field, and the water depth

(mm) for each irrigation day was calculated. Possible drought stress was analysed with help
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of the data from the stem water potential campaigns, fruit production measured at the end of
the season and measured soil water content at 50 cm and 70 cm depth, which were not

assimilated.

Integrated stem water potential (ISWP) was calculated based on the following function

(Garcia-Tejero et al. 2010):
ISWP = Y15 Piyy (g — 1) + %(Pi = Piy) (g1 — 1) (3.10)

where P; and P;,, are midday stem water potential measurements at day 7/ and day i+1 day,

(n;41 — n;) is the interval in days between two measurements (14 days for our fields).

We also calculated the Seasonal Irrigation Performance Indicator (SIPI) for the period July-
September, which is potentially most affected by drought stress, for the years 2015 and 2016.
SIPI is an indicator for the water saving performance of each irrigation method. It was
calculated as ratio between actual evapotranspiration (ET:) and the incoming water flux
(irrigation water and rainfall) in the same period. Therefore, irrigation amount and ET, and

ET¢ were determined for these periods, with K¢ factor derived by the method in section 3.2.2.

A statistical analysis was performed on the basis of measured integrated stem water potentials,
soil water contents, irrigation amount, commercial fruit production and irrigation
performance index. We calculated Pearson correlation coefficients between variables, and

analysed (linear) relationships between variables.

3.3 Results and discussion

3.3.1 Selection of the fields for evaluation in 2015 and 2016

Three CLM fields (CLM-D, CLM-E, CLM-F) were excluded from the analysis in 2015, as
for those fields the scheduled irrigation scheme was not followed. Figure 3.2 illustrates the
comparison between scheduled and real-applied irrigation amounts, including the three
inconsistent CLM fields. In two cases the farmers did not follow the recommended irrigation
amount, and in one case flow velocity in the irrigation system differed significantly from the
anticipated value. In all cases, more irrigation was applied than planned as shown in Figure

3.2.
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For the irrigation period 2016, again three CLM fields (CLM-A, CLM-C, CLM-F) were
excluded from the analysis. The soil moisture sensor for field CLM-C showed permanently
saturated conditions and the FDR sensor for field CLM-A broke one month after the start of
irrigation scheduling. The experiment in field CLM-F was aborted by the request of the field
owner in the middle of August, as he was worried that our irrigation scheduling scheme could
compromise the production. However, neither stem water potential measurements nor visual
inspections at site indicated drought stress. The other three CLM fields (CLM-B, CLM-D,
CLM-E) followed the CLM-DA irrigation scheduling scheme, with applied irrigation
amounts close to the calculated amounts most of the time. This is also related to the fact that
in 2016 water flow speeds were re-calculated on the basis of a near real-time comparison of
scheduled and applied irrigation amounts, and corrected if necessary. The real applied
irrigation amounts for field CLM-D in June and July were smaller than the calculated one, as
the administrator of the irrigation system accidentally stopped the irrigation on some days in

this period.
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Figure 3.2 Comparison of irrigation amounts calculated for CLM-DA and truly applied irrigation

amounts for all CLM-DA (A~F) fields in 2015 and 2016.
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3.3.2 The forecasted precipitation

The irrigation prediction for the next few days is also dependent on the accuracy of the
weather forecast, in particular the amount of precipitation. Figure 3.3 compares the forecasted
and observed precipitation for the site. Mostly, the forecasted precipitation is higher than the
observed one. Nevertheless, most of the precipitation events were predicted by GFS. In the
irrigation period from July to October in 2015, the sum of the forecasted precipitation amount
was 328mm, compared to a measured amount of 193mm. From June to October 2016, the
sum of the forecasted precipitation amount was 156mm, compared to a measured amount of

100mm.

In October (both in 2015 and 2016) the forecasted precipitation was much higher than the
observed one. The forecast biases in 2015 and 2016 were mainly related to October. In
October, larger precipitation amounts are related to mesoscale systems which form over the
relatively warm Mediterranean Sea and it seems that the prediction of the precipitation

associated with those systems was more difficult.
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Figure 3.3 Comparison of forecasted (CLM Precipitation) and measured (Real Precipitation) monthly

precipitation for 2015 and 2016.
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3.3.3 Stem water potential and deep layer soil water content data for the

evaluation of water stress

Previous research for citrus trees suggested that the minimum water potential value at wilting
point can be down to -1.7 MPa for young leaves, and -1.9 MPa to -2.6 MPa for mature leaves
(Syvertsen et al. 1981; Syvertsen 1982). It is also reported that citrus trees under regulated
deficit irrigation can have a threshold stem water potential of -1.84 MPa (Ballester et al.
2014). So we got the conclusion that if stem water potential is lower than -1.8 MPa a negative
impact on citrus trees is expected. As shown in Figure 3.4, in 2015 two of the CLM-DA
fields (CLM-A, CLM-B) may have experienced water stress at one measurement day in
August, and this was also the case for one FAO field (FAO-B). This water stress might be
related to the high water vapor pressure deficit that day, which might have resulted in stomata
closure irrespective of irrigation amount and soil water status (Ballester et al. 2011). From
June to October in 2016, Figure 3.4 indicates the possible water stress in July for field CLM-
D, related to irrigation scheduling which did not follow the CLM-DA suggestions and was
too low. At the end of October, with the harvest season coming for some fields and given
predicted precipitation events, the irrigation was stopped by the technicians resulting again in

drought stress. In all other cases there was no drought stress according to these measurements.

As shown in Figure 3.5, soil water measured at 50 cm and 70 cm depth for the three CLM
fields did not show a decreasing trend over the irrigation season in 2016, which implies that
irrigation was not too small, which would cause decrease of soil water contents. Soil water
contents measured at 50 cm and 70 cm depth for the fields irrigated according the FAO and

Farmer methods did not show a decreasing trend either.
3.3.4 Statistical analysis

3.3.4(a) Validation of the CLM-DA system

The observed and modelled soil water contents (SWC) at 10 and 30 cm depth for one of the
CLM fields are shown in Figure 3.6. The assimilation of FDR measurements significantly
improved the SWC-characterization at 10 and 30 cm depth. Table 3.2 illustrates that the
RMSE for SWC at 10 and 30 cm depth is smaller than 0.04 cm®/cm? for all the 6 fields in
2015. However, some of the fields show a relatively high RMSE compared to others. As only
states but no parameters were updated, a systematic bias of soil properties can be expected,

affecting also soil water contents.
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Unfortunately, for the experiments in 2016 three CLM-DA experiments could not be
considered in the analysis as discussed in section 3.3.1. Therefore, the RMSE of SWC for
those fields could not be calculated and is symbolized as N.A. in Table 3.2.
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Figure 3.4 Stem water potential measurements (including error bars for standard deviation) for CLM

fields, FAO fields and Farmer fields in 2015 and 2016.

Table 3.2 Comparison of RMSE (cm?/cm?) between simulated and measured SWC for the CLM fields
(N.A. is no data).

Fields CLM-A CLM-B CLM-C CLM-D CLM-E CLM-F
2015 0.02 0.022 0.04 0.034 0.03 0.025
2016 N.A. 0.037 N.A. 0.021 0.031 N.A.
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Figure 3.5 Soil water content (SWC) measurements at 50 cm (green line) and 70 cm (blue line) depth
for the CLM fields, FAO fields and Farmer fields in 2016. These measurements were not used in the

assimilation.
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Figure 3.6 Comparison of soil water content modelled by CLM and measured by FDR (field CLM-B)
at 10 cm and 30 cm depth for the year 2016.

3.3.4(b) Water consumption data and irrigation performance

Irrigation records for the three irrigation scheduling methods are presented in Table 3.3 and
Figures 3.7 and 3.8. Overall, the CLM fields were irrigated with a smaller water amount than

the Farmer fields. In 2015 the water saving performance was even better than the FAO
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method (9% less irrigation water for CLM than for FAO and 21% less for CLM than for
Farmer fields). Table 3.3 shows that in average the accumulated irrigation depths in 2016 are
slightly larger for the CLM-DA fields (341 mm) than for the fields following the FAO
method (337mm), but again smaller than for the Farmer fields (424 mm). The averaged
seasonal irrigation performance index (SIPI) for 3 CLM fields in 2015 was larger than for the
FAO fields (0.71 for CLM and 0.64 for FAO), suggesting better water saving performance. In
2016 the averaged SIPI for CLM and FAO fields showed no differences (both are 0.66), and
were both larger than for the Farmer fields (0.56).

Taking the average over both years and the three months of July, August and September, the
CLM fields received 24% less irrigation water than the fields irrigated according the Farmer
method, while the FAO fields were irrigated with 22% less water than the Farmer method.
Meanwhile, the fruit production data showed that the CLM fields had a slightly smaller
production, but given the large variation between the fields this is not significant. In 2016,
due to heavy precipitation and strong winds in the harvest period (November and December),

all the fields suffered production loss irrespective of the irrigation method.

Figure 3.7 shows that the irrigation amounts vary less between the different months for the
CLM fields than for the FAO fields. Although the differences in irrigation amount between
the fields are large, all the fields show a similar trend in the monthly irrigation amounts, with

largest irrigation amounts for the months of June until August.

The temporal dynamics of irrigation depth, ET,, ET¢ and precipitation for the different fields
which are irrigated according different methods are displayed in Figure 3.8 (except CLM-
fieds which were excluded from the analysis, see section 3.3.1). The daily maximum
temperature (7max), minimum temperature (7min), ETc and precipitation were also shown in
Figure 3.8. The ET: was calculated by meteorological data assuming a K¢ factor of 0.68, a
typical value for citrus tree. Precipitation amounts were lower in 2015 resulting in a higher
irrigation demand than in 2016 for all fields, irrespective of the irrigation method. In
particular the larger amounts of precipitation in September and October 2015 resulted in a

temporary irrigation stop and the overall smaller applied irrigation amounts than in 2016.
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Figure 3.7 Comparison of monthly applied irrigation amounts for the different fields according
different irrigation scheduling methods in 2015 and 2016.

w3s

i

2 i N - i }':\4.;‘; ...'\ )
-] V \
87 rin o), fLAa ! ’ b
Faona iy W o AN
515 NTa WY A e V_f‘ o V,,M,‘.\,.’v\‘ gl L
2o \y ' B Aol 4
K L R &
o
- < Irrg(CLM-A) “ - Irrg(CLM-E) ~— Irrg(Farmer-B)
s00 Irrg(CLM-B) -~ Irrg(FAO-A) — ET,
* Irrg(CLM-C) -~ Irrg(FAO-B) — ET,

Irrg(CLM-D) == Irrg(Farmer-A) - Precipitation

]

Accumulated water (mm)
w w
H H

g

= ET, mmm Precipitation |

Daily water flux (mm)
]

20 Jj
a . I.I | [T . PR l‘ N | 1 l I
AT et gl T i
g F 7. ] A% a2 = g > A > g A a0 A% A% A A1 A
O Ll G A Sl SN Y Sl T N T R LS L PSS
20% 20% 28 2% Pl Pl 28> g 28> Fiig Pl g o 28> 2> 28> 28 i
Date
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Table 3.3 The summary of accumulated water depth (including irrigation and precipitation),
integrated stem water potential (ISWP), FDR soil water content averaged by 10 cm and 30 cm
measurements (SWC), seasonal irrigation performance index (SIPI) and commercial fruit production

(yield) for 3 CLM fields, 2 FAO fields and 2 Farmer fields in both year of 2015, 2016.

water water
SWCIS SWCI6 ISWPIS ISWPI6 yield yield
Fields ept ePth16 o ipr1s sipr16
(ton/h)15  (ton/h)16
(cm*/em®) (cm¥/em®)  (MPa) (MPa) (mm) (mm)
CLM-A 029 028 9078 8380 30896 42141 056 042 4385 3532
CLM-B 03 032 93.06 92,01 31242 31157 079 081 3878 14.54
CLM-C 036 037 7829 7475 31274 2648 077 093 2932 2888
CLM-D 021 025 8894  -10471 37035 32944 055 064 1155 NA.
CLM-E 022 023 90.70 -86.49 354.9 38086 056 053 19.54 NA.
CLM-F 034 035 -60.66 68.98 39876 41995 05 049  27.53 25.85
FAO-A 028 031 -83.61 69.91 31837 32487 065 065 36.5 35.01
FAO-B 02 022 9254 -83.88 361.15 34848 0.63 067 5037 NA.
Farmer-A 036 037 7921 -80.71 369.03 35658 061 065  30.61 30.71
Farmer-B 034 036 7696 8340 500.16 49077 045 048  27.68 14.99

3.3.4(c) Validation of the CLM-DA system

Table 3.4 shows the correlations between different variables determined at the irrigated fields.
The table shows that only two pairs of variables show larger absolute correlation coefficients:
(i) SWC and ISWP, and (ii) SIPI and accumulated water depth, simply because SIPI was

calculated based on incoming water depth and ET.

We could not find significant correlations between fruit production and other environmental
variables. This shows that SWC and ISWP were still in a range without or very limited
drought stress, so that production is not affected by those conditions. In addition, commercial
fruit production was affected by other conditions like heavy rain and wind late in the season
in 2016, which might have impacted the different fields to a different degree, and which adds
additional noise in the relation between fruit production and other variables. Further variables

of relevance are the citrus variety and the management by the farmers which differed between
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the fields and also might have affected production. In summary, it can be concluded that
irrigation according the CLM-DA methodology did not reduce fruit production, and fruit
production showed larger variations between fields related to other variables than SWC and

ISWP.

Table 3.4 Correlation matrix between different variables determined at the irrigated fields: average
FDR soil water content measured at 10 cm and 30 cm depth (SWC), integrated stem water potential
(ISWP), accumulated incoming water depth, seasonal irrigation performance index (SIPI) and

commercial fruit production (yield).

SWC ISWP water depth SIPI yield

SwWcC 1.00 0.61 -0.26 0.37 -0.07
ISWP 0.61 1.00 0.26 -0.12 -0.09
water depth -0.26 0.26 1.00 -0.87 -0.11
SIP1 0.37 -0.12 -0.87 1.00 -0.03
yield -0.07 -0.09 -0.11 -0.03 1.00

3.3.4(d) Soil water content - Stem water potential relation

As shown in Figure 3.9, the soil water contents at 10 cm and 30 cm depth, show a significant
linear correlation (» = 0.61) with integrated stem water potential. This implies that plant water
stress can be monitored with help of soil water content measurements at 10 cm and 30 cm

depth.

3.3.4(e) Soil water content - Incoming water depth relation

The incoming water depth is the applied irrigation plus the precipitation and it is calculated
for each field. Figure 3.10 shows that for the CLM and FAO-fields there is a relation between
average SWC and incoming water depth. The incoming water depth is higher for fields with a
low SWC, which illustrates that irrigation is especially needed for drier fields. It also
illustrates that the irrigation amount was not too large, as the fields which are most
intensively irrigated still have an average SWC smaller than other fields. This is not the case
for the Farmer fields where average SWC is very high and the incoming water depth is also
very high. It is clear that for those fields the high irrigation amounts resulted in high SWC

reaching saturation.
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Figure 3.9 Relation between integrated stem water potential (ISWP) and soil water content
measurements at 10 cm and 30 cm (Average SWC) depth for all fields and both the years 2015 and
2016.
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3.4 Conclusions and outlook

During the irrigation campaign for the Picassent site (near Valencia, Spain) from July to
October in 2015 and June to October in 2016, three different irrigation scheduling methods
were tested for 10 citrus fields, including the CLM-DA method proposed in this paper, the
FAO water balance model and a traditional method based on farmer’s experience. The CLM-
DA method combines model predictions by a land surface model, weather prediction and soil
moisture data measured by capacitance probes. These information sources are optimally
combined using sequential data assimilation, to predict drought stress for the next days and

schedule irrigation accordingly.

The applied irrigation amounts were measured by a water meter. Stem water potential and
citrus production indicating the possible water stress were also measured. The results
illustrate the water saving potential of the CLM-DA method compared to traditional irrigation
by farmers. The data from the different fields indicate that 24 % less irrigation water was
needed than the irrigation scheduling according the Farmer method. The stem water potential
and deep soil water content data showed that during most of the irrigation period, CLM fields
were not suffering from water stress. Although using less water than the farmer fields, no
significant production loss was detected. The FAO method is also an efficient irrigation

scheduling approach but it is highly dependent on site-specific empirical parameters.

A statistical analysis of all data collected in the field campaign revealed a positive correlation
between SWC and integrated stem water potential data. This illustrates that SWC-data
measured at 10 cm and 30 cm depth are useful to detect plant drought stress and can be used
as basis to schedule irrigation. It was also found that for the CLM and FAO-fields, the
applied amount of irrigation correlated negatively with SWC, illustrating that drier fields
needed more irrigation and that it was the low SWC that governed irrigation amounts. On the
contrary, for the fields that were irrigated according the Farmers method high average SWC
was associated with very high irrigation amounts, indicating that for those fields the causal
relation was different from the CLM- and FAO-fields; for the Farmer fields the high
irrigation resulted in high SWC close to saturation. The statistical analysis also revealed no
significant relation between SWC and ISWP on one hand and fruit production on the other
hand, indicating that for the range of SWC and ISWP in this study, SWC and drought stress

were not limiting factors for fruit production.
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Comparing the CLM-, and FAO-methods, a similar performance was found in this study. It
should be taken into account that the FAO-method was an established methodology for these
fields and parameter settings were already tuned for this approach. Therefore the performance
of the CLM-DA approach can be considered satisfying. The main differences between the
two methods are the more complex and biophysically based model used in the CLM-DA
method, the use of measurements in near real time to actualize the model state (while the
FAO-method does not include those) and the use of a weather forecast. It is expected that the
CLM-DA method will outperform the FAO-method if more measurements and better weather
forecast data are available, if weather conditions are less stable and if the model is well

calibrated on the basis of locally available data.

In summary, a rational, automated approach for irrigation scheduling was formulated with
high potential in terms of integrating on-line data from sensors. The advantage of the CLM-
DA method is automatic remote control, real time response, and the possibility to integrate all
kinds of soil moisture and other data into a model. For example, this approach would also

allow the integration of land surface temperature measured at high resolution by drones.

Nevertheless, the real-world application of this method is challenging. The accurate
application of the calculated irrigation water to the fields was one of the challenges requiring
intensive cooperation with farmers and continuous maintenance of the measurement
infrastructure (e.g. soil moisture sensors). Irrigation scheduling could have been further
improved with additional data which would have allowed the estimation of parameters

specific for citrus trees as well as a better definition of the critical soil moisture threshold.
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Chapter 4 : Can drip irrigation be scheduled with Cosmic-ray

Neutron Sensing?

*adapted from: Li, D., Schron, M., Kohli, M., Bogena, H., Weimar J., Jiménez-Bello, M. A., Han, X.,
Martinez Gimeno, M. A., Zacharias, S., Vereecken, H., and Hendricks Franssen, H.-J., 2019. Can drip
irrigation be scheduled with Cosmic-ray Neutron Sensing? Vadose Zone Journal, 18(1). doi:
10.2136/vzj2019.05.0053.

4.1 Introduction

Irrigated agriculture plays a vital role in the food production to support the increasing world
population. Irrigation is responsible for 70 % of the fresh water consumption by mankind
(Vereecken et al. 2009). In order to save water resources and to fulfil future crop production
requirements, more efficient irrigation scheduling is needed. The irrigation scheduling
approach can be applied based on the difference between root-zone soil water content (SWC,
cm’/cm?) and a target soil water content that is related to the specific plant preferences

(Evans et al. 1991).

Many devices can provide information about soil water content, such as Time Domain
Transmissivity (TDT), Frequency Domain Reflectometry (FDR) (Peters et al. 2013),
tensiometers (Smajstrla and Locascio 1996), capacitance probes (Fares and Alva 2000) and
Cosmic-ray Neutron Sensing probe (Zreda et al. 2012). The Cosmic-ray Neutron Sensing
(CRNS) probe can be used to measure soil water content up to depths of 80 cm and with a
footprint radius ranging from 130 m to 240 m at sea level (Kohli et al. 2015). Cosmic
radiation originates from extrasolar sources and penetrates the atmosphere of the Earth. This
interaction creates high-energy neutrons which further collide with atoms in the air, soil, and
vegetation to produce medium-energy neutrons (Zreda et al. 2012). Those neutrons can be
efficiently moderated towards lower energies by collisions with hydrogen. Therefore, the
intensity of medium-energy neutrons is an indication for the amount of hydrogen atoms at the
land surface and its temporal variation. The medium-energy neutrons, which can be detected
by the CRNS probe, travel hundreds of meters in air and tens of decimeters in the soil. Hence,
the advantage of the CRNS method is its ability to determine soil water states over larger
areas and deeper soil layers, non-invasively, with low maintenance, and at a smaller cost

compared to traditional soil moisture sensors.

To properly understand the neutron signal and its dependence on the integral soil water

content, many attempts have been made to model the neutron response with Monte Carlo
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codes (Desilets et al. 2010; Zreda et al. 2012; Franz et al. 2013). In 2015, the neutron
transport model URANOS (Ultra Rapid Neutron-Only Simulation) ( K&hli et al. 2015; 2018)
was developed to reduce the number of model assumptions and make easy-to-use neutron
simulations available for hydrological and soil science communities. Since then, the revised
model results have been confirmed in many experimental studies (Heidbiichel et al. 2016;
Schattan et al. 2018; Schron et al. 2017; 2018a; 2018b; Fersch et al. 2018). The footprint is a
function of air pressure, soil moisture, and air humidity, and is also slightly affected by the
vegetation cover (Kohli et al. 2015). For typical wet soils the measurement depth is about 15
cm, while 86 % of the measured neutrons originate from within a circle with a diameter of
about 400 m (Kohli et al. 2015). In dry soils, the measurement depth can go down to 80 cm
and the diameter to more than 500 m at sea level. The above-ground neutron density is
affected by changes of cosmic-ray intensity and by additional hydrogen sources, such as
biomass and lattice water (Andreasen et al. 2017; Schreiner-McGraw et al. 2016; Baatz et al.

2015). Standard procedures are available to correct these effects.

The accuracy of CRNS retrieved soil water content has been verified in many investigations
(Zreda et al. 2012; Han et al. 2014b; Zhu et al. 2015; Hawdon et al. 2014; Schron et al.
2018b). Earlier work allowed improving the interpretation of measured neutron signals by
CRNS for wet ecosystems, which showed that soil water content could be estimated with an
error of 0.03 cm?/cm® (Bogena et al. 2013; Baatz et al. 2014). Other studies demonstrated,
that reliable estimates of soil moisture with standard CRNS probes under humid conditions at
sea level can only be achieved for integration times equal or larger than 6 hours (Schron et al.

2018b).

Drip irrigation is a localized irrigation method that allows water to drip slowly to the plant
roots to save water and fertilizer input. Drip irrigation is associated with strongly
heterogeneous soil water content, with relatively small irrigated wet patches and larger non-
irrigated dry area. The research of Li et al. (2018) has demonstrated the possibility of drip
irrigation scheduling based on FDR soil water content measurements in the irrigated part. The
limited number of FDR sensors and the FDR sensor’s limited measurement volume (FDR
footprint) has imposed considerable uncertainties regarding soil water content estimates for
the small wet patches, so that the estimate of soil water deficit for the whole field is also
uncertain. This in turn makes it challenging to schedule the amount of drip irrigation water

needed for the plants located on the wet patches.
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As CRNS is able to estimate soil water change for a relatively large footprint, some past
research was dedicated to the use of the CRNS for irrigation scheduling. Barker et al. (2017)
investigated the optimal number and locations of CRNS probe for irrigation management.
Han et al. (2016b) tested the assimilation of synthetic neutron intensity data to improve land
surface modelling with the Community Land Model (CLM) and to do real-time drip
irrigation scheduling. None of these studies applied CRNS data in a real-world case study for

drip irrigation scheduling.

Our research question is to what extent the CRNS can be used for the scheduling of drip
irrigation amounts by using measured neutron intensity as a proxy for root-zone soil water
content. This work aims to test the measurement precision of the CRNS in a drip-irrigated
field and to evaluate whether it is sufficient to support drip irrigation management. The work
relies on both, field experimentation and modelling of neutron intensity. A field calibration
campaign was carried out for the drip irrigated Picassent site in Spain. The neutron transfer
model (URANOS) was used to model the neutron response to the drip irrigated citrus fields
and to explore the potential of the CRNS method to detect drip irrigation events.

4.2 Materials and methods

4.2.1 Research sites and measurements

The research site is an area with drip irrigated citrus fields located close to Picassent in Spain
(39.38° N, 0.47° E), which is a semi-arid region. Precipitation is concentrated in the autumn,
winter and spring, and the yearly average precipitation is 453 mm (Li et al. 2018). Citrus is
one of the most productive fruit plants in the world. The growing of citrus needs abundant
sunlight and adequate rainfall or irrigation. Citrus trees flower in spring; fruits develop
afterwards and ripen in fall or early winter. Precipitation during the main growth period of
citrus fruit in summer is rare and therefore the water demand of the trees almost entirely

depends on irrigation.

Drip irrigation is being used to schedule irrigation for these citrus tree fields, with two
pipelines (1 m distance) and 10 emitters for each tree. The emitters in the study area are
mostly integrated pressure compensating type, with a common flow rate of 4 L/h. All the
emitters are surface placed every meter without mulch cover. The trees are separated by 5 m
from each other, both along the planted lines and between these lines, see also descriptions in

Li et al. (2018). The meteorology observatory of IVIA (Instituto Valenciano de
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Investigaciones Agrarias) provides meteorological data and is located 2868m from the
CRNS-probe (http://riegos.ivia.es/). During most irrigation periods, drip irrigation was
applied five or six times per week. From October onwards, depending on the weather and
fruit maturation process, irrigation frequency was reduced and finally stopped. Due to drip
irrigation, the soil water status of the land surface is very heterogeneous. The field can be
divided into wet patches (irrigated parts) and dry patches (the rest of the field). The areal
contribution of the drip irrigated part to the whole area is small and thus the SWC

identification poses a challenge to the integral CRNS method.

As shown in Figure 4.1, we have installed a CRNS probe in the dry patch between two drip
lines (CRS1000, Hydrolnnova LLC, 2009) and various FDR probes at the test site. FDR
probes (factory calibrated ENVIROSCAN Water-Content-Profile Probe, Campbell Scientific,
Inc.) were installed in six irrigation plots within the footprint of the CRNS probe, measuring
soil water content at four depths (10 cm, 30 cm, 50 cm, and 70 cm). Within a distance of 200
m from the CRNS probe, 4 FDR probes were installed to measure soil water content in the

non-irrigated part of the area and 9 FDR probes were installed in the irrigated part of the area.

'=! Legend
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@  Sample_wet 8
@ Sample_dry g==3
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Figure 4.1 The distribution of FDR probes (for irrigated and non-irrigated area respectively), 18 soil
samples for the CRNS-calibration and CRNS probe in the Picassent field, Spain. The radii of the
circles are 11, 50, 110 and 200 meters. The small photographs show the installation of FDR in non-
irrigated (upper left) and irrigated (upper right) area, as well as the shape of irrigated patch (lower left)
and the installation position of CRNS (lower right).
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4.2.2 Field sampling for CRNS calibration in Picassent

The CRNS probe needs to be calibrated with soil samples during a field campaign while
neutron intensity is simultaneously measured by the CRNS probe. According to the new
findings by Kohli et al. (2015) and Schron et al. (2017), the area within a radius of less than
50 m from the CRNS probe has about the same contribution to the neutron signal as the
remaining area beyond 50 m. In accordance with suggestions by Schron et al. (2017),
sampling radii for this study were chosen as 11 m, 50 m, and 110 m, where six sampling
locations were evenly distributed along each circle. At each location, the soil was sampled at

six layers separated by 5 cm between 0 cm and 30 cm depth.

Samples were taken using a soil corer of 30 cm length and 5 cm diameter (HUMAX, Martin
Burch AG, Rothenburg, Switzerland) on June 1st, 2015. Half of the samples were taken in
the wet and irrigated area (the green dots in Figure 4.1), and the other half in the dry, non-
irrigated area (red dots in Figure 4.1). Each 30 cm long soil core was frozen and cut by 5 cm
intervals, in order to obtain 6 layers for each sampling location. All the 108 samples were
dried in the oven for over 36 hours until the sample weight became stable. These samples
have been averaged to get footprint soil water content taking into account their distance to the
CRNS probe by using a weighting function that corresponds to the neutron transport theory

(see section 4.2.3).

Six soil samples (10 g), containing material from all six layers were also analysed in the lab
for contents of lattice water and soil organic material. The lab analysis gave the organic and
the inorganic carbon content (Corg, C), and the hydrogen content (by using a heat conductivity
detector) and nitrogen content. The analysed hydrogen content was converted to water
equivalents by multiplying with a ratio value of 9 (H2:H20=1:9). From the analysed hydrogen
content, all the weight of lattice and organic water was calculated and converted to
volumetric content using the average soil bulk density value. The average volumetric lattice

water and organic water content were found to be 0.04 cm®/cm? in total.

4.2.3 Footprint soil water content from soil sampling and FDR sensor network

In order to obtain soil water content time series from CRNS probe, the FDR soil water
content measurements need to be vertically and horizontally averaged using the weighting

function from Schrén et al. (2017). The footprint soil water content from gravimetric
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sampling was derived to do the calibration. Meanwhile the FDR sensors were also area

averaged to get footprint SWC, which was used as verification data.

Our research site is composed of non-irrigated fields, which are typically drier, and areas that
exhibit a heterogeneous soil moisture pattern due to drip irrigation. In order to account for
this heterogeneous soil moisture pattern, we introduced the fraction of the irrigated area
Fryec and calculated the weighted SWC for the wet part 6,¢; and dry part 84,, separately.
Assuming the wet part fraction Fry,e; is the same across the whole CRNS footprint, the soil

water content for the footprint 6., can then be obtained as:
Btotal = Owet * Flier + Bdry * (1= Fryet) 4.1)

The measurements to determine the extent of the wet fraction were made before the soil
sampling campaign. For each tree, there are two drip lines separated by 1 m in space. The
dripping points along the drip line are separated with 1 m distance. Since the row distance
and tree distance are 5 m, each tree occupies an area of 5 m X 5 m, among which there are 10
emitters. The average diameter (D) defines the wetted area for each dripping point. The
fraction of the total drip-irrigated area (Fryye¢) is given then by:

m-(0.5-D)?

= (4.2)

Frgyet =10+

The weighting method proposed by Schron et al. (2017) was used to obtain a weighted
average soil moisture value from the point samples and FDR sensors. The vertical weight Wy
for different soil layers at depth d can be calculated with the following empirical function

(Schron et al. 2017; Kohli et al. 2015):
Wy4(r, 8) « e~24/Dss(7.6) 4.3)

where the effective measurement depth Dgg can be calculated from the distance to CRNS
probe (r) and soil water content 8. Then the weighted average soil water content < 8 >
from all the measurements (1~k) can be obtained by the weighting function (Ko&hli et al.
2015):

_ LWk bk
< Oy >= W (4.4)

An iterative approach was used to calculate the vertical weight of each layer, which means

that the initial vertical soil water content was set equal to the average over all the six soil
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samples taken by the HUMAX soil corer, and in case of FDR, to the average over the first
two soil layers (10 cm and 30 cm depth). The representative depth of each soil sample was
considered as the middle of this segment (e.g. 2.5 cm is the representative depth for the first

segment).

The horizontal weights for each of the soil sampling points or FDR probes depend on the
distance between the FDR probes and the CRNS probe, as well as the air humidity and soil
water status in the footprint (Schron et al. 2017). The average over all the profile soil
samplings or FDR measurements using Equation 4.1 was taken as the initial soil water
content for the footprint, and then the horizontal weights along with Equation 4.4 were used

to get the new soil water content for the footprint in an iterative fashion.

4.2.4 Soil water content estimation from CRNS probe

The data used in the analysis are hourly neutron intensities measured by CRNS probe from
June 1 2015 to December 31 2016 in Picassent. Besides neutron intensity, CRNS probe also
records time, temperature, relative humidity and air pressure, which is used for data quality
control and data pre-processing. Epithermal neutron count data have to be corrected for
external influencing factors that are not related to soil water content. Neutron intensity data
are normalized to reference air pressure (Zreda et al. 2012). In our case, it is the air pressure

at the calibration day (June 1st, 2015).

The variation in the incoming neutron flux also needs to be corrected using the concurrent
and reference high-energy neutron count rate during the research period (Zreda et al. 2012),
which were provided by the Jungfraujoch neutron monitor station of the University of Bern
(3-NM64, http://cosray.unibe.ch). The reference high-energy neutron count rate is the
averaged value during the calibration day. The effect of atmospheric water vapor on
epithermal neutron intensity was then corrected using the method described in (Rosolem et al.
2013), the reference absolute humidity value was set equal to the average value on the

calibration day.

The so-called No method was developed by Desilets et al. (2010) to estimate soil water
content 6, in the CRNS footprint as function of the neutron count rate Ny, through a simple
calibration function. To calibrate the Ny parameter, a single field calibration campaign was

conducted as described in section 4.2.2.
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Npi -1
0, = (ao ' pbd) (NLOh - al) - ((12 'pbd) = Olar — Horg 4.5)

where Ny stands for the neutron intensity over dry soil at a specific test site and needs to be
calibrated once; a;=0.0808, a;=0.372 and a,=0.115 are constant fitting parameters. ppq is
soil bulk density (g/cm?) averaged from all the soil samples taken on the calibration day (1.3
g/cm®), it was calculated with an iterative method along with the weighting of soil water
content for each layer. 8}, is the volumetric lattice water (cm?/cm®) and Borg is soil organic

water equivalent (cm’/cm?).

4.2.5 Modelling of the neutron response to drip irrigation

The neutron response was simulated with URANOS (version 0.99rho) for the drip-irrigated
field in Picassent to test the effect of drip irrigation on the neutron intensity at the CRNS
location. The URANOS model simulates neutron interactions in a Monte Carlo framework,
and was originally aimed for applications in nuclear physics (Kohli et al. 2018). Recently it
has been used to model the interaction of cosmic-ray neutrons with air, soil and vegetation in

order to understand neutron intensity measured by CRNS probe (K&hli et al. 2015).

URANOS was applied here on the SWC pattern caused by drip irrigation with a model
resolution of 0.5 m. As shown in Figure 4.2, a typically irrigated domain of size 500 m x 500
m around the CRNS probe was divided into wet and dry grids as a simplified scenario, with
wet grids of 1 m width interrupted by every 0.5 m (to mimic the irrigated wet patches) and
larger dry patches of 4 m width between trees. The CRNS probe is located in the dry grid

within the wet stripe.

The domain was further divided into two vertical layers; the bottom layer was 0.5 m thick
soil and the above layer was vegetation with air in the canopy space. The canopy was
described as blocks with 4 m diameter and 2 m thickness, while the stem height was 1 m. The
biomass density in the upper layer was 10 kg/m?, and the air humidity was 1.4 g/m?, which

were typical values for the study domain and based on measurements.

The URANOS model used two main scenarios for the non-irrigated area: SWC value of 0.14
cm’/cm? and 0.05 cm®/cm? for the non-irrigated part (with the 0.04 cm?/cm? lattice water and
organic carbon taking into consideration). Meanwhile the SWC values range between 0.10
cm®/cm?® and 0.45 cm®/cm? for the irrigated part with steps of 0.05 cm?®/cm®. Given this model

set-up, we analysed the spatial distribution of neutron density and observed intensity with

47



regard to changing water content in the irrigated patches. The latter scenario is to test whether

CRNS results differ under more arid conditions.

Schematical segment of the URANOS setup, total extent: 500 m

D Soil . Tree
. Soil, irrigated I:I Detector 24m
[ ]Gridosm | '

Figure 4.2 Neutron transfer model settings for the typical condition in Picassent, the blue grids
correspond to the irrigated patches and gray grids correspond to the non-irrigated area; the green layer
on the top is the simplified representation of the citrus vegetation cover including canopy and stem;

the yellow cube symbolizes the CRNS detector.

4.2.6 Statistical analysis

The two time series (from June 1, 2015 to December 31, 2016 for Picassent) of footprint soil
water content, calculated from neutron intensity data and derived from FDR probes, were
compared by the Root Mean Square Error (RMSE), Pearson correlation coefficient () and
Kling-Gupta efficiency (KGE) (Gupta et al. 2009):

RMSE = /—Z?ﬂ("lj‘xﬂ)z (4.6)

r(Xy,X,) = 2t 4.7)
X10X4
2 2105
KGE =1 - [(r(Xl,XZ) —1)%+ (ﬁ - 1) + ("ﬁ - 1) ] (4.8)
ox4 Uxq
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where X;is the soil water content estimated from neutron intensity measured by the CRNS
probe, X, is the average soil water content in the CRNS footprint calculated from the FDR-
probes, n is the number of time steps with measurements, and ¢ indicates time step,
cov(Xy, X;) is the covariance between X; and X,, 4 and o represent the means and standard
deviations of X; and X,. In the ideal case, the best fit between X; and X, would reach RMSE
=0, r =1 and KGE =1 (Gupta et al. 2009).

The daily maximum variation (DEF) of FDR soil water content was calculated on drip
irrigation days to demonstrate the effect of irrigation on soil water content measured by FDR

Sensors.
DEF = max {max (Xq) — min (X3)} (4.9)

where max(Xy) and min(X4q) are the maximum and minimum daily soil water content
averaged over all FDR sensors in the footprint, the average has been calculated every 10

minutes.

In addition, the normalized Standard Deviation (Ngq) of CRNS neutron intensity was
calculated to determine the CRNS measurement error. The hourly neutron intensity N and its
uncertainty o have a relation as described in Bogena et al. (2013) and Schron et al. (2018b). o
is the standard deviation of N using Gaussian statistics; and Ngq is the hourly normalized

standard deviation of neutron count rate:
o(N) =N (4.10)
Ngtq = 0(N)/N = 1/J/N 4.11)

Also a statistical analysis was performed to analyse the linear correlation between measured
soil water content and neutron intensity. The Pearson correlation coefficients were calculated
for each month of 2016 to explore under which conditions the soil water content shows a

stronger correlation with the CRNS measurements.
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4.3 Results and discussion
4.3.1 Soil water content measurements from field sampling and FDR sensors

4.3.1(a) Area averaged soil water content from soil sampling and FDR

Table 4.1 illustrates that a typical wet patch created by drip irrigation has an average diameter
(D) of 0.50 m. Given the measured dimensions of a typical wet patch, the overall percentage
of wet fraction (Fry,et) within the larger field is around 8 %. The wet fraction of 8 % is used

for CRNS calibration using data from the soil sampling campaign in June 2015.

The vertical and horizontal weighted SWC for the irrigated and non-irrigated parts are shown
in Figure 4.3, which demonstrates the effect of drip irrigation and precipitation on soil water
content as measured by FDR sensors. For averaging soil water content horizontally, the
relative proportions of the wet and dry fractions within the CRNS footprint are needed.
Figure 4.3 shows the influence of the relative proportion of the irrigated, wet fraction (Fryyet)
on the spatial average of the FDR soil water content measurements. If the fraction of the wet,
irrigated part in the CRNS footprint were larger, the apparent average soil water content of
the CRNS footprint would also increase. The temporal evolution of soil water content for the
CRNS footprint coincides with the soil water content for the non-irrigated dry part, and is
strongly related to precipitation events. Due to the failure of FDR data from September to

December in 2015, there was a data gap for this period.

Figure 4.4 demonstrates that the measured gravimetric soil water content for the dry, non-
irrigated part is lower than the soil water content measured by FDR probes. It suggests the
existence of a systematic bias between the gravimetric soil water content measurements and
the FDR data. This can be related to the sampling volume as the gravimetric soil water
content for the upper 10 cm has been determined by two sections of sampling profiles. For
the non-irrigated part, the soil of the upper 5 cm is much drier than the soil at 5~10 cm depth
based on soil sampling results, so that the FDR-based footprint soil water content (the
shallowest layer measured at 10 cm depth) is higher than the gravimetric soil water content
determined over the upper 10 cm. The found biases were constant so that a correction of -
0.05 cm?/cm? was added to the FDR derived foot print soil water content time series for the

non-irrigated part and +0.01 cm>/cm? for the irrigated part.
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Table 4.1 Measurements of diameters of drip irrigated patches (and their average) in June 2015 in the

close vicinity of the installed CRNS probe.

Patch 1 Patch 1 Patch 3 Patch 4 Average
Diameter (cm) 50 49 46 54 50
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Figure 4.3 Area averaged soil water content of FDR sensors installed in the non-irrigated part (upper)
and irrigated part (middle) for 2015 and 2016, together with precipitation and irrigation depths (cubic
water amount divided by field area) of the field where CRNS was installed. The lower graph shows
the averaged FDR soil water content in the CRNS footprint as function of different values for the wet

(drip irrigated) fraction (0, 8 %, 20 %) within the footprint.
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Figure 4.4 The footprint soil water content (black line) at the CRNS-calibration day in Picassent,
calculated from both the soil sampling campaign and the installed FDR sensors. The averaged SWC
for the irrigated part (blue) and non-irrigated part (red), from both the soil sampling and
corresponding FDR data are also shown. The wet fraction on the X-axis is the drip-irrigated

percentage in CRNS footprint.

4.3.1(b) FDR response to drip irrigation

Figure 4.5 shows the hourly soil water content averaged over all FDR sensors measured in
the irrigated wet part. There is a daily cycle of soil water content on irrigation days for each
month in 2016. The soil water content increased fast when irrigation started in the late night,
but dropped to lower values close to pre-irrigation afterwards with a daily maximum

variation smaller than 0.05 cm’/cm? as shown in Table 4.2.

Table 4.2 The daily maximum variation range (DEF) of FDR soil water content (cm*/cm?®) measured

in the drip irrigated area during irrigation days, then averaged for each month, N.A. means no data.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

DEF(SWC) 0.043 0.042 0.048 0.054 0.041 0.052 0.055 0.045 0.034 0.027 0.027 N.A.
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Figure 4.5 Hourly records of area averaged soil water content measured by FDR sensors installed in
the irrigated wet part for all irrigation days and for different months (2016). The shadow area
highlights the irrigation period (starts from 3 am and lasts 1~2 hours).

4.3.2 Soil water content inversion from CRNS for drip irrigated field

4.3.2(a) Neutron intensity measured by CRNS

The measured hourly and 12 hourly averaged neutron intensity data from June 2015 to
December 2016 in Picassent were corrected for fluctuations in air pressure, variations in
incoming neutron intensity, and variations in water vapor pressure of the air. Figure 4.6
shows the temporal evolution of the corrected neutron intensity and also illustrates that
neutron intensity and precipitation are inversely correlated. Major rainfall events are

associated with a rapid drop in neutron counting rate.
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Figure 4.6 The corrected neutron intensity averaged for 1 hour and 12 hour intervals and daily
precipitation amounts (meteorological data from IVIA) at the Picassent site in Spain from June 2015

to December 2016.

4.3.2(b) Relation between CRNS data and footprint soil water content

Figure 4.7 shows the correlation between the footprint soil water content calculated from
FDR measurements (assuming a wet (irrigated) fraction of 8 %) and measured neutron
intensity. Measured neutron intensity was averaged over a 24-hour interval. The results show
weaker correlation coefficients between SWC and neutron count intensity (larger than -0.5)
in February, March, June and July, when SWC is generally lower than in other months. The
possible reason is that the effect of irrigation on neutron intensity is neutralized by strong
evaporation in summer days resulting in limited SWC-fluctuations over time. The months
with stronger (more negative) correlation exhibit days with higher SWC and therefore more
variation in SWC, which is related to higher precipitation amounts in those months (Figure
4.6). This also indicates that the calibration curve will be better determined if data are
available from days with more different SWC as suggested in previous research (Iwema et al.

2015).

As the duration of the drip irrigation was normally 1~2 hours, we also explored the relation
between CRNS measurements and drip irrigation in an hourly time interval. However, the
measured hourly neutron intensity did not show a clear trend related to applied drip irrigation
(see Figure 4.8). The sampling fluctuations are also large, related to the short time period
(hourly) for averaging neutron intensities. In order to determine the uncertainty of CRNS
measurements, the hourly standard deviations (Ngq) of CRNS measurements on irrigation

days are shown in Table 4.3.
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4.3.2(c) Inversion of CRNS soil water content by soil sampling calibration

The fitted calibration curve based on the Ny method is given in Figure 4.9, and can be used to
estimate soil water content from the measured neutron intensity. This curve is based on
neutron intensity measurements averaged over 12-hour intervals. The footprint SWC
calculated from the gravimetric soil sampling on June 1st 2015, was used to carry out the No
calibration, assuming the wet part fraction is 8 %. The FDR derived footprint SWC, over the

years 2015 and 2016, were used as verification.

Figure 4.9 illustrates that the calibration curve fits well with FDR derived footprint SWC and
corresponding neutron intensity. Figure 4.10 shows the estimated soil water content for the
CRNS footprint for the years 2015 and 2016 with this method. The RMSE between CRNS
and FDR derived footprint SWC is 0.025 cm?/cm®. The calibrated N is close to 876 cph for a
wet part fraction of 8 %. The Pearson correlation coefficient and KGE value between
calibrated CRNS SWC and FDR derived footprint SWC during the research period are 0.848
and 0.842. Those values are all close to 1, suggesting a good fit between the CRNS

calibration results and FDR observation.
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Figure 4.7 Correlation between daily averaged CRNS neutron counts and footprint soil water content

(SWC) for all months of 2016. The line in the background is the calibration curve.
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Figure 4.8 Hourly neutron intensity during drip irrigation days at the Picassent site from January to
December 2016, each line symbolizes the hourly variations for one day. The shadow area highlights

the irrigation period (starts from 3 am and lasts 1~2 hours).

Table 4.3 Hourly normalized standard deviation (Nsq) of neutron intensity measured on drip irrigation

days (averaged for each month).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Nsa  0.0400.0390.039 0.039 0.040 0.039 0.039 0.040 0.040 0.041 0.041
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Figure 4.10 Soil water content derived by the Ny method (CRNS SWC) after bias correction of the
FDR sensors. Displayed are also the FDR averaged footprint SWC (FDR SWC avg) and daily

precipitation.

4.3.3 Neutron modelling with URANOS model

In section 4.3.2 we found that SWC can be estimated for the CRNS-footprint with a relatively

small RMSE. However, drip irrigation does not cause a large increase in the SWC of the
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footprint as shown in section 4.3.1. In order to further explore this, the detectable neutron
density was simulated with URANOS for the whole field to test the effect of drip irrigation

on the neutron intensity.

The URANOS simulation result (see Figure 4.11) shows the highest neutron density for tree
canopies, suggesting the canopy locally dominates the whole pattern. The reason is that the
canopy acts as an additional moderator, slowing neutrons of higher energies down to
detectable medium-range energies. This effect is stronger than the moderation of medium-
energy neutrons down to thermal energies, to which the sensor is mostly insensitive (Kohli et

al. 2018).

As shown in Figure 4.12, it is evident that the neutron intensity decreases when the irrigated
soil becomes wetter. However, the FDR sensors located in the wet patches show SWC
(cm’/cm?) increases by a maximum of 0.05 related to irrigation (see Figure 4.5 and Table 4.2).
And the neutron count limit that can be detected by the CRNS in 1 hour is approximately 4 %
relative intensity change, as shown in Table 4.3. For a wetter case (0.14 SWC for the non-
irrigated soil), the change of 0.05 SWC by irrigation decreases the neutron intensity by not
more than 1-3 neutrons per hour, or less than 1 % (see Figure 4.12). The total SWC change
from 0.14 to 0.45 modelled with URANOS corresponds to a decrease of total neutron
intensity change by 4.5 %, which can be visible for CRNS. For drier non-irrigated soil, the
total neutron intensity change is steeper as shown in Figure 4.12. The additional 0.05 SWC
caused by irrigation corresponds to a 2.1 % neutron intensity change. This change in the
neutron intensity could be visible for more efficient CRNS detectors or with higher
integration time. But in both cases a SWC change from 0.30 to 0.35 for irrigated soil cannot

be resolved.
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Figure 4.11 Birds-eye view at a central 30 m x 30 m slice of the research domain showing the
modelled distribution of neutron intensity at 0.5 m resolution. Black contours indicate the location of

the trees.
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Figure 4.12 Relative change of modelled neutrons as a response to drip irrigation for actual soil

conditions at our site (blue) and for dryer conditions (orange) of the non-irrigated soil.
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4.4 Conclusions

The drip-irrigated site near Picassent, Spain was used for investigating how well soil water
content can be estimated with a CRNS probe and whether this can be used to reliably
schedule irrigation amounts. Measurements of neutron intensity by the CRNS probe were
made from June 2015 to December 2016 and soil water content for the CRNS footprint was
calculated for the same period. A soil sampling campaign was used to calibrate the Ny

parameter, as suggested in the CRNS literature.

The results indicate that in spite of limited calibration data, still a relatively good estimate of
the CRNS footprint soil water content could be obtained. Nevertheless, the soil water status
of the wet, irrigated area could not be estimated precisely. Simulations by the URANOS
neutron transport model confirmed that a standard CRNS probe does not allow for accurate
estimation of the soil water content of the irrigated area at our specific site. The modelled
neutron intensity changes caused by drip irrigation were lower than the statistical fluctuations
of the CRNS measurement. The performance of CRNS technique is mainly limited by the

following conditions:

1. The irrigated area is only 8 % of the total area. Since CRNS has an area-averaging
footprint, the small patches of irrigation are hardly visible and interpretable in the neutron
detector signal. We suppose that irrigation of larger areas could have a more significant
influence on the CRNS signal. For example, this effect was actually observed during rain

events.

2. Changes of soil water content due to irrigation are small (+0.05 cm®/cm?®) under rather
wet conditions (about 0.35 cm?*/cm® SWC). The above-ground neutron density is much more
sensitive to changes of SWC at the lower, dry end of the SWC spectrum. Hence we suppose

that the sensor would perform better in more arid regions (see also Figure 4.12).

3. The irrigation period is only active for a few hours. The statistical uncertainty of such
a short-term neutron measurement is not sufficient to resolve changes below 3 %. The
employed CRNS detector can resolve small changes of water content only with longer
integration periods of about 12 hours. We suppose that larger and more sensitive detectors

could be able to resolve shorter periods.

We conclude that the precise scheduling of drip irrigation is not feasible with a traditional

CRNS device in our specific case. But CRNS would perform better in cases where drier soil

60



is irrigated, during a longer time period or with a more intense irrigation method. The
sensitivity of CRNS should also be improved to get a much higher signal to noise ratio in
order to detect small-scale drip irrigation. Non-standard CRNS probes, such as the Cosmic-
ray Rover (Desilets et al. 2010; Schron et al. 2018a) are comprised of larger proportional
counter tube and hence feature shorter integration times, allowing for higher count rates in
the same time interval (Ko6hli et al. 2018). Multiple CRNS probes at the same field would
also increase the total detected neutron intensity and decrease the statistical noise (Schrén et
al. 2018b; Jakobi et al. 2018). These new instruments and measurement strategies could be

further tested to observe the soil water content variation caused by drip irrigation.
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Chapter 5 : Assessment of the uncertainties related to irrigation

modelling by a land surface model across India

*adapted from: Li, D., Han, X., Dhanya, C. T., Siebert, S., Vereecken, H., and Hendricks Franssen,
H.-J., 2020. Assessment of the uncertainty related to irrigation modelling by a land surface model
across India, In preparation for submission to Journal of Hydrology.

5.1 Introduction

Irrigated agriculture is crucial for feeding the increasing population around the world
(Carruthers et al., 1997; McLaughlin and Kinzelbach, 2015). Human activities have put extra
pressure on the water resources through water withdrawals, especially for agricultural
purpose. In order to assess the water balance situation in the past, present and future, it is
necessary to model the irrigation requirement (D4ll and Siebert, 2002). Irrigation modelling
is also needed for understanding land-atmosphere interaction over agricultural areas (Lawston
et al., 2017). Irrigation will affect both the energy and water budgets of the land surface
(Ozdogan et al., 2010). Several studies illustrated that irrigation increases evapotranspiration
(ET) and decreases land surface temperature (Leng et al., 2013; Huang et al., 2016; Shah et
al., 2019). Considering irrigation modelling in land surface models could therefore give an
improved description of the water and energy balance variations, also in relation to climate
change and human activities. Some land surface modelling studies analysed the impact of
irrigation at the regional and global scales (D61l and Siebert, 2002). Both land surface models
and hydraulic models have been widely used for simulating irrigation and water storage
variations under conditions of climate change (Sacks et al., 2009; Fowler et al., 2018; Shah et

al., 2019).

Leng et al. (2013) evaluated the performance of irrigation simulation by the Community Land
Model (CLM4) considering the spatial distribution and intensity of applied irrigation. Lu et al.
(2015) coupled a crop model (CLM4crop) with the Weather Research and Forecasting model
(WRF) to represent the interactions between climate and irrigated agriculture, showing an
improved surface flux partitioning at irrigated agricultural sites compared to model
simulations without dynamic crop growth. Xie et al. (2017) and Zeng et al. (2017) developed
a system based on CLM 4.5 considering human water withdrawal and lateral groundwater
flow incorporated. Their simulations over the Heihe River Basin of northwestern China
showed that irrigation and other anthropogenic exploitation have caused 2 m groundwater

depletion (Zeng et al., 2016; 2017).
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According to a UN report (UN: World Population Prospects 2017), the population of India
has exceeded 1.3 billion and will continue to increase with a high rate of over 1% per year.
The increased food demand will increase the need for agricultural production. As irrigated
agriculture accounts for 70% of India’s food production, water resources are critical for
sustaining the huge population (Kumar, 2003). India has frequently been affected by droughts
and drought frequency and severity is expected to increase in the context of climate change
(Prabhakar and Shaw, 2008; Kumar et al., 2013; Mallya et al., 2016). Given the frequently
dry conditions in India, the irrigation requirement will also further increase, which implies
increased pressure on groundwater resources (Murray, 2013). GRACE (Gravity Recovery
and Climate Experiment) satellite data have shown that India is affected by severe
groundwater depletion (Rodell et al., 2009). Groundwater depletion is likely to increase in the
future with increasing temperatures and the projected increase of severe droughts (Scanlon et

al., 2012).

In parts of India, the impact from human activities on water resources is larger than the
impact of global warming (Haddeland et al., 2014). Given the sensitivity of the Indian
subcontinent to water stress, the reconstruction of changes in water storage and the water
cycle over the subcontinent have gained importance. For India and the Indian subcontinent,
the research of Shah et al. (2019) shows the influence of irrigation on the water budget and
the land surface temperature by applying the hydrological model VIC. Fowler et al. (2018)
have shown the impact of irrigation on precipitation by using the irrigation enabled
Community Land Model (CLM4). Previous research also suggested that the effect of
irrigation on the land surface fluxes is larger than the uncertainties of the global land cover

product over the irrigated area of India (Madhusoodhanan et al., 2017).

In India, the spatiotemporal pattern of crop and irrigation requirement is strongly decided by
the unevenly distributed precipitation within the monsoon season. However, most of the
previous studies (Haddeland et al., 2014; Fowler et al. 2018; Shah et al. 2019) ignored the
temporal variability of varying irrigation areas and frequency throughout the year. The
seasonal change of the irrigation area and the effect of irrigation frequency have not been
considered in the past researches. Therefore, it is important to explore the influence of a time-
variable irrigation map and irrigation frequency on the irrigation modelling with land surface
models. By using the CLM model, the irrigation requirement and land surface flux of each
grid cell in the model domain over India have been reconstructed for the year of 2010 at a

resolution of 10 km x 10 km. The uncertainties of time-variable irrigation area and irrigation
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frequency were explored by different simulation scenarios. In addition, the role of the
irrigation factor, which determines the target soil water content and therefore the needed
amount of irrigation to compensate the water deficit, were tested. The modelled irrigation
requirement was calculated for each scenario to determine the role of these uncertainties in
irrigation modelling. The land surface fluxes (total evapotranspiration, transpiration) for
different modelling scenarios were calculated and compared with large-scale remote sensing
data. The ratio of transpiration to total evapotranspiration was also calculated to explore the

effect of irrigation on the partitioning of evapotranspiration.

5.2 Data and methods

5.2.1 Study area

Our research area is the India Subcontinent covering the spatial domain of 8°N-38°N and
68°E-98°E. India has a large proportion of farmland and 90% of water use is for agricultural
purpose (Kumar, 2003). Indian summer monsoon rainfall contributes to around 80% of the
annual precipitation (Paul et al., 2016). The whole year is divided into three seasons, namely
Zaid (pre-monsoon: March to May), Kharif (monsoon: June to October), and Rabi (post-
monsoon: November to February), in accordance to the uneven distribution of precipitation in

time.

Northern and southern India have different onset and durations of the monsoon season, and
farmers select crop types and crop schedule according to the agricultural water availability.
Groundwater from aquifers is extracted extensively for irrigation, especially during the non-
monsoon season, which is reflected in the GRACE gravity data over Northern India (Asoka
et al., 2017). Such declination in not evident over Southern India, however (Asoka et al.,
2017). In this study, Northern and Southern India will be considered separately. The
validation of the irrigation modelling result will be focused on Northern India. The division
line is set at the latitude of 23 degrees, which divides the research domain into two equal

parts.
5.2.2 Methods

5.2.2(a) Community land model
The Community land model (CLM4.5) is the land model of the Community Earth System
Model (Oleson et al., 2013). It has been widely used in climate and hydrological research, to
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model ecological and hydrological processes. In CLM, the soil water flow and land-
atmosphere exchange fluxes are simulated by using a modified Richards equation and Monin-

Obukhov similarity theory (Oleson et al., 2013).

The soil profile in CLM has 15 vertical layers, while soil hydrological states and fluxes are
calculated only for the upper 10 layers (Oleson et al., 2010). The soil hydraulic parameters
are calculated from the sand and clay fractions (Oleson et al., 2013) using the Clapp-
Hornberger pedotransfer function in combination with the Brooks-Corey parameterization.
Spatial land surface heterogeneity of CLM is represented by 3 levels of sub-grid hierarchy
including land units, snow/soil columns and plant functional types (PFT) (Oleson et al., 2010).
Each grid cell may have multiple land units including urban, glacier, lake, wetland and

vegetated, as well as multiple columns and PFTs (Oleson et al., 2013).

In this study, the modelling domain for whole India was composed by 360 x 360 grid cells, at
an average resolution of 10 km x 10 km. In order to avoid heterogeneity within a single
model grid cell, each grid cell has only one soil column and one plant functional type,
representing the most dominant plant type. The plant functional types are derived from
MODIS (Moderate Resolution Imaging Spectroradiometer) land cover data (MCD12Q1) with
the help of world climate classification data (Ke et al., 2012). The detailed description of the
method can be found in in Ke et al. (2012).

The monthly LAI (Leaf Area Index) for each PFT in CLM was obtained from the MODIS
LAI 8-day composite product (MOD15A2). The original 500 m data was regridded to 10 km
using Nearest Neighbor sampling method. The monthly SAI (Stem Area Index) for each PFT
was derived from monthly LAI values by using the method of Lawrence and Chase

(Lawrence and Chase, 2007).

5.2.2(b) Irrigation scheme

In CLM, the irrigation scheduling is planned on the basis of the calculated water deficit,
which is the difference between the model predicted and target soil water content. The target
soil water content is defined for each soil layer as described in Equation 5.1 (Oleson et al.

2010):

etarget =1- Firrig) * Omin + Firrig * Omax (5.1
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where 0, is the minimum soil water content to keep stomata completely open and 6,,,y is
soil saturation. The irrigation factor Fj g (default value is 0.7) was derived empirically to let
the calculated global irrigation amount match with the gross agricultural water withdrawal
around the year of 2000 (Oleson et al. 2010). Since the default factor was calibrated without
specifying the irrigation frequency, the impact of the value for the irrigation factor should be

assessed along with irrigation frequency.

The irrigation amount is calculated by the integrated water deficit (Wyeficir) over the root

zone (Oleson et al. 2010):
Wieficit = Ziv R;- max(etarget -0, O) (5.2)

where 0; is the soil water content for layer i, R; is the root fraction, and N is the number of

CLM-layers with roots.

The irrigation amount was calculated with the help of a Python code, coupled with CLM, to
integrate different irrigation maps, irrigation frequencies and other irrigation parameters.

Irrigation was only applied to the model pixels with crop cover and non-zero LAIL
5.2.3 Datasets

5.2.3(a) Soil texture

We used the global soil texture data from FAO (Food and Agricultural Organization of
United Nations), which were transformed from vector maps to raster files (see Figure 5.1).
The FAO Digital Soil Map of the World (DSMW) is the digital version of the FAO-
UNESCO Soil Map of the World at a scale of 1:5 million, with soil types classified according
to the FAO-UNESCO legend.
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Figure 5.1 The sand (left) and clay (right) percentages of the FAO-based soil map.

5.2.3(b) Atmospheric forcing

Previous research has shown that global reanalysis products are valuable for drought
assessment during the Indian monsoon season (Shah and Mishra 2014). In our simulation
experiments, the meteorological forcings being used by CLM were generated by combining
reanalysis data from NCEP (National Center for Environmental Prediction), GLDAS (Global
Land Data Assimilation System) and rain gauge measured precipitation data. The
GLDAS NOAHO025 forcing data is 3-hourly and with a spatial resolution of 0.25° x 0.25°
(Rodell et al. 2004). Meteorological variables like wind speed, relative humidity, air pressure,
air temperature, incoming long wave and short wave radiation from GLDAS were used as

input for the CLM model.

Since precipitation is the major influencing meteorological variable for the water balance
with the largest uncertainty, the precipitation amounts from GLDAS were not used but
replaced by daily gridded rain gauge observations from IMD (India Meteorology Department)
(Pai et al. 2014). The daily rainfall data (IMD4) have a resolution of 0.25° x 0.25° and are
available for a long period (1901-2010) (Pai et al. 2014). The daily precipitation amounts
from IMD4 were divided by 24 and used as hourly input data for CLM.

5.2.3(c) Irrigation map

Two irrigation maps were used in the CLM model simulations, which are a time-fixed
irrigation map and a season-specific irrigation map. The time-fixed irrigation map was a high
resolution irrigation map (250m, from the year of 2000 to 2015) created by remote sensing

data was chosen to derive the irrigated area (Ambika et al., 2016). The high-resolution
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irrigated area data were created based on the differences between normalized difference
vegetation index (NDVI) for irrigated and non-irrigated crops, making use of the NDVI
product and land cover data from MODIS (Ambika et al., 2016). In addition, the percentage
of irrigated area in each model grid cell of 10 km x 10 km was calculated. In order to
simplify the computation while maintaining the irrigated area equal to the irrigated area from
the original irrigation map (approximately 850,000 km?), model grids with over 35 % land

being irrigated were considered as irrigated pixel, as shown in Figure 5.2.

For creating the second season-specific irrigation map, another irrigation dataset
(GEOSHARE pilot project- Crop Science Bonn) with a spatial resolution of 0.5° x 0.5° was
used, including the spatial distribution of cereal crops (including maize, wheat and rice)
under irrigation in each of the three seasons (Zaid, Kharif and Rabi). The seasonal maps for
irrigated cropping areas were created by integrating land cover data, crop calendars and
census data of the year 2005 (Zhao and Siebert, 2015). In order to create the season-specific
irrigation map with resolution of 10 km x 10 km, the coarse resolution (0.5° % 0.5%) and the
previous time-fixed irrigation map with higher resolution (10 km % 10 km) were combined
together, with irrigation only applied to model grids that are irrigated in both maps as shown

in Figure 5.3.
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Figure 5.2 The time-fixed irrigation map with resolutions of 10 km x 10 km (left) and corresponding

irrigation percentage (right) in each model grid.
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Figure 5.3 The distribution of the irrigated areas in the three seasons (Rabi, Zaid and Kharif)
according to the combination of irrigated maps with two resolutions (0.5° x 0.5 and 10 km % 10 km).

5.2.3(d) Global ET products as model validation

Evapotranspiration (ET), which includes soil evaporation, plant transpiration (T) and canopy
evaporation, represents an important process for the global water and energy cycles (Wei et al.
2017). The spatiotemporal patterns of ET are the consequence of complex interactions
between soil, vegetation, and lower atmosphere (Zhang et al. 2009; Wu et al. 2017). Many
approaches are being used for the observation of ET, such as lysimeters, the eddy covariance
technique and the LAS (Large Aperture Scintillometer) (Meijninger et al. 2002). Global ET
estimates have been also been acquired by remote sensing based methods, examples are
SEBS (Surface Energy Balance System) (Su 2002), GLEAM (Global Land Evaporation: the
Amsterdam Methodology) (Miralles et al. 2011), and the MODIS ET product (Mu et al.
2011).

GLEAM ET data (v3: 0.25° x 0.25%) and MODIS ET (MOD16A2: 500 m) were used to
compare with CLM modelled ET. The GLEAM ET product is based on the Priestley and
Taylor equation and microwave remote sensing data, without considering the
parameterization of stomata conductance and aerodynamic resistance (Miralles et al. 2011).
The MODIS ET product is derived from a remote sensing based Penman-Monteith method
and Priestley-Taylor equation with aerodynamic resistance taken into consideration, with
various input data like land cover (MOD12), albedo (MCD43) and Leaf Area Index/fraction
of Photosynthetically Active Radiation (LAI/fPAR, MODI15A2) from MODIS (Mu et al.
2011). Both products were resampled to the CLM resolution (10 km % 10 km) using Nearest
Neighbour sampling method.
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5.2.4 Experiment design and analysis

In this study, six numerical experiments were conducted as shown in Table 5.1. The irrigation
requirement and hydrological fluxes over India were reconstructed with help of the CLM
model for the year 2010. Different scenarios were tested to explore the role of time-variable
irrigation area, irrigation frequency and irrigation factor. The different model scenarios
included the control case without irrigation and the cases with weekly irrigation and default
irrigation factor of 0.7. In addition, for the weekly and daily irrigation scenario, a time-
variable seasonal irrigation map was used. Moreover, the irrigation factor (Fiiq) Was set to
0.7, 0.6 and 0.5 for the daily-irrigated cases, in order to test the influence of irrigation factor
on the modelled irrigation and surface runoff. The duration of irrigation was set to 4 hours for

all the simulation scenarios.

The model validation was conducted separately for Northern and Southern India, for the
model grids that were irrigated. The averages of irrigation amount and ET for the irrigated
grid cells in Northern India were calculated. In order to explore the effect of ignoring
heterogeneity within the 10 km x 10 km model grid cells, the averages ratio of transpiration
to total evapotranspiration was separately calculated for grid cells with more than 50 % of the
area being irrigated and grid cells with only 35-50 % being irrigated. Due to the lack of
verification data, the irrigation modelling for the different scenarios was compared and the
impact of the different input data was evaluated. The modelled ET over all grids with

irrigation was compared with the satellite-based GLEAM and MODIS ET products.

Table 5.1 Summary of simulation experiments with different model setups.

Experiment Description
nolR Model run without irrigation
weekIR_F0.7 Model run with weekly irrigation (irrigation factor=0.7) and time-fixed irrigation map
weekIR season F0.7 Model run with weekly irrigation (irrigation factor=0.7) and seasonal irrigation map
dayIR season F0.7 Model run with daily irrigation (irrigation factor=0.7) and seasonal irrigation map
dayIR_season_F0.6 Model run with daily irrigation (irrigation factor=0.6) and seasonal irrigation map
dayIR season_F0.5 Model run with daily irrigation (irrigation factor=0.5) and seasonal irrigation map
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5.3 Results and discussion

5.3.1 Irrigation modelling for different scenarios

From MODIS LAI time series shown in Figure 5.4, it can be concluded that if model grids
are less irrigated (35%-50%), the LAI increases in the first crop season (January to March)
less than for the grid cells which are more irrigated (>50%). The averaged LAI values in less
irrigated grid cells for the first three months are only 55% of the values for more irrigated
grid cells. The dual-seasonal change of LAI can be detected in Northern India, which
coincides with two seasons of crop growth and harvest. If irrigation is not applied in the first

crop season, the crop may suffer drought stress.

On the other hand, in Southern India the growing season is mainly in the monsoon period;
which starts earlier and ends later than in Northern India. Therefore, the crops in Southern
India rely less on irrigation. As the major crop season is within the monsoon period in
Southern India, the growing of crops may not need much irrigation to sustain and the effect
of irrigation on land surface fluxes is much less pronounced compared to precipitation. Since
the dual-seasonal change of LAI linked with irrigation input is more prominent for the model
grid cells that are more than 50 % being irrigated in Northern India, we will focus on the

model validation of land surface fluxes for these model grids in later chapters.

The modelled irrigation requirement with the different model setups is shown in Figure 5.5 as
well as in Table. 5.2. According to a report from FAO (FAO. 2015. AQUASTAT Country
Profile — India), the water resource being used for irrigation purpose in India for the year of
2010 was estimated to be 688 km?, which is larger than the simulated irrigation for weekly
irrigation scheduling. However, the irrigation statistics were not precisely validated and vary
significantly between each year. For example, the irrigation water requirement was estimated

as 371 km? in the year of 2006 (http://www.fao.org/nr/water/aquastat/data). Figure 5.5 shows

the average irrigation for each moth of 2010 and all the irrigated grid cells in Northern India
where at least 50% of the area was irrigated. The simulation cases using the seasonal
irrigation map (weekIR season F0.7) saved water in the pre-monsoon (March to May)
season and resulted in the smallest irrigation amounts in one year (255 km?). The irrigation
frequency also impacts the simulated irrigation needs. If daily irrigation is assumed,
simulated irrigation is much higher than if weekly irrigation is assumed, especially in the
month of June, but also during most of the rest of the year. The effect is larger in June which

is related to the sudden start of the irrigation after a long dry season. Simulations with a daily
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irrigation for a default irrigation factor of 0.7 (dayIR season F0.7) results in the highest
simulated irrigation requirement, while the irrigation requirement modelled by CLM

decreases with the value of the irrigation factor (dayIR_season_F0.6 and dayIR_season_F0.5).

Figure 5.6 shows the accumulated runoff caused by the irrigation and precipitation in each
month for the simulation scenarios. Weekly irrigation scheduling using a seasonal irrigation
map as input results in the lowest simulated runoff among the simulation scenarios, except
the monsoon season. On the other hand, the variation in runoff is strongly linked with
irrigation frequency. The modelled runoff for daily-irrigated cases is much higher than the
weekly-irrigated cases. Additionally, with the same daily irrigation frequency, the modelled

runoff increases with the value of irrigation factor.

Figure 5.7 shows the modelled averaged daily soil water content (SWC) for the scenarios
which use a seasonal irrigation map. Results are shown for SWC at 10 cm, 30 cm and 50 cm
depth for all grid cells in Northern India which are more than 50% being irrigated. The
averaged SWC corresponding to the wilting point and field capacity is also displayed. The
results indicate that the SWC modelled by CLM is near the wilting point in the pre-monsoon
season when there is no irrigation applied, but for all irrigation strategies the overall SWC is
clearly above the wilting point. The target SWC shown in Figure 5.7 was calculated on the
basis of field capacity, wilting point and irrigation factor according Equation. 5.1. Even with
the default irrigation factor and intensive daily irrigation, the modelled SWC was still below
the target SWC and the soil water deficit was not reduced to zero. Daily irrigation resulted
also in significant surface runoff. This indicates that the default irrigation factor in CLM is
too high and should be calibrated as function of the irrigation frequency and reliable water
consumption data on irrigation.

Table 5.2 Summary of irrigation modelling results for different simulation scenarios for whole India,

as well as the FAO statistics of irrigation amount for the year of 2010

Experiment Irrigation (km?)
weekIR_F0.7 453.64
weekIR_season_F0.7 255.4
dailyIR season_F0.7 768.57
dailyIR_season_F0.6 561.41
dailyIR_season_F0.5 391.1
FAO Irrigation (2010) 688
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Figure 5.4 Monthly accumulated precipitation (top), and monthly averaged MODIS leaf area index
(bottom) for the year of 2010; which were averaged separately for the model grids in Northern India
with at least 50 % of the area being irrigated (red), 35 %-50 % of the area being irrigated (green) and

the model grids in Southern India with at least 50 % of the area being irrigated (blue).

400
e—e weekIR_F0.7(>50%) e+ daylR_season_F0.7(>50%) ~—= daylR_season_F0.5(>50%)
5 weekIR_season_F0.7(>50%) &4 daylR_season_F0.6(>50%)

300

Irrigation (mm)
N
Qo
b

100

50

o
2010-01 2010-02 2010-03 2010-04 2010-05 2010-06 2010-07 2010-08 2010-09 2010-10 2010-11 2010-12
Month

Figure 5.5 Monthly accumulated irrigation modelled by CLM with different model setups for the year
0f 2010. All simulation results were averaged for the model grids in Northern India with at least 50 %

of the area being irrigated.
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Figure 5.6 Monthly accumulated runoff modelled by CLM for different model setups for the year of
2010. All simulation results were averaged for the model grids in Northern India with at least 50 % of

the area being irrigated.
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Figure 5.7 Daily modelled average soil water content at 10 cm, 30 cm and 50 cm depth with different
model setups using the seasonal irrigation map for the year of 2010, along with the wilting point, field
capacity and calculated target soil water content based on different irrigation factors (0.7, 0.6 and 0.5).
Simulation results were all averaged for the model grid cells in Northern India with at least 50% of

the area being irrigated.
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5.3.2 Land surface flux modelling and validation

The spatial distributions of evapotranspiration (ET) modelled by CLM in the first three
months of 2010 are shown in Figure 5.8. Compared with the MODIS and GLEAM ET in the
same period, the spatial pattern of ET modelled by CLM with irrigation input is closer to the
MODIS ET, especially in the northern part of India. The ET patterns modelled without
irrigation input are closer to GLEAM ET. Time series of modelled ET for the 12 months in
2010 are shown in Figure 5.9 (Northern India, for grid cells which are at least 50% irrigated).

For the grid cells in Northern India, which were more than 50% being irrigated, the ET
increase from January to February for the irrigated modelling scenario is possibly linked to
the applied irrigation in the same period (see Figure 5.9). The temporal trends of modelled
ET fluxes show the strong influence of the seasonal irrigation map. The method using the
seasonal irrigation map shows the lowest ET simulation among the simulation cases with
irrigation. MODIS ET shows a similar trend of increasing ET from January to February.
GLEAM has low ET values in the first two months without ET increase. In the pre-monsoon
season (March to May), GLEAM ET is closer to the non-irrigated CLM modelling cases than
to the other irrigated cases. Except for the first three months, MODIS ET is always lower
than GLEAM ET with ET-values near zero in the pre-monsoon season, which is much lower
than GLEAM ET and CLM modelled ET. The reason may be the influence of cloud coverage
or other uncertainties within the algorithm of the MODIS ET product. Overall, the simulation
scenario using the seasonal irrigation map shows a temporal ET-pattern more similar to
MODIS ET than the other simulation scenarios. The different irrigation factors did not impact
modelled ET very much, indicating that also a lower irrigation factor resulted in high enough

SWC to sustain crop water demand and therefore ET.

The effect of irrigation on the partitioning of ET is also plotted in Figure 5.10 (Northern India,
for grid cells that are more than 50% and 35%-50% irrigated). The irrigation aims to fulfil the
transpiration need of the crop, and the lower T/ET-ratio implies a lower irrigation efficiency.
Both the less irrigated grid cells (35%-50%) and more irrigated grid cells (>50%) have higher
T/ET-ratios for the simulation case with a seasonal irrigation map, compared to the case with
a fixed irrigation map, especially in the pre-monsoon season (March to May). For the cases
with daily irrigation, the modelled ET and T/ET ratio are similar for the three different

irrigation factors. It implies that the irrigation being applied with a low irrigation factor of 0.5
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is sufficient to sustain plant growth and transpiration, while the rest of the “over-irrigated”

water is wasted through surface runoff.

As shown in Figure 5.10, for the model grid cells with lower irrigation percentage (35%-
50%), but which are considered as fully irrigated pixels in the modified irrigation map, the
irrigation requirement is overestimated, as the T/ET ratio is significantly lower for these grid
cells than for the model grid cells with at least 50% of the area being irrigated. The T/ET-
ratio for grid cells with 35%-50% irrigated area is lower than 0.4 in the first three months,
compared with a value of over 0.5 for grid cells that were at least 50% irrigated in the same
period. This indicates that choosing 35% irrigation as the threshold for assigning a grid cell as
irrigated grid cell may overestimate the irrigation requirement for the corresponding model
grid. Neglecting the irrigation requirement of model grids with less than 35% irrigated area
introduces additional errors in the modelling of the irrigation requirement. In order to
improve the irrigation modelling, the heterogeneity in each grid should be considered and

model resolution should be increased.
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Figure 5.8 Simulated monthly accumulated evapotranspiration with seasonal irrigation (ET_CLM_IR)
or without irrigation (ET_CLM_nolR); along with MODIS ET product (MODIS_ET) and GLEAM
ET product (GLEAM_ET) for the first three months of the year of 2010.
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Figure 5.9 Simulated monthly accumulated evapotranspiration according different model setups along
with MODIS ET and GLEAM ET for the year of 2010. Simulation results were all averaged for the
model grid cells in Northern India with at least 50 % of the area being irrigated.
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Figure 5.10 Simulated monthly ratio of transpiration to total evapotranspiration (T/ET) modelled by
CLM with different model setups for the year of 2010. Simulation results were averaged for the model

grid cells in Northern India with at least 50 % or 35 %-50 % of the area being irrigated.

5.4 Conclusions

Irrigation plays an important role in the water and energy cycles of the terrestrial system,
especially in semi-arid regions which are susceptible to drought in the crop growing season(s).
Land surface models have been used to model irrigation requirement. However, irrigation
modelling is affected by uncertainties regarding the spatiotemporal distribution of irrigation.
Our main research question was how the uncertainty regarding the spatiotemporal

distribution of irrigation affects the simulated irrigation requirement and terrestrial hydrology
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(e.g. evapotranspiration). In order to do so, the irrigation requirement and hydrological fluxes
have been simulated by the Community Land Model v. 4.5 for the Indian domain for the year
of 2010 using multiple simulation scenarios. The results for the simulation scenarios suggest
irrigation significantly changed the land surface fluxes and water balance for the irrigated
area, which implies that land surface modelling needs to consider the effect of irrigation.
Moreover, setting the irrigation timing, frequency and irrigation factors are important for the

large-scale irrigation modelling.

The results showed that weekly irrigation scheduling using seasonal variable irrigation maps
shows higher T/ET and therefore higher irrigation efficiency than the simulation scenario
with a fixed irrigation map, in the pre-monsoon season (March to May). This suggests that
land surface modelling including irrigation needs to consider that cropland is only irrigated
during some periods of the year. In the dry pre-monsoon period in India, large areas of
cropland are not cultivated or irrigated. However, in the other two seasons (monsoon and
post-monsoon) the seasonable variable irrigation map did not outperform other irrigation
assigning methods, showing a similar T/ET ratio compared to the other irrigation strategies.
The reason could be that the irrigation map in the monsoon and post-monsoon periods is not

better than the time-fixed irrigation map.

Daily irrigation scheduling using the default irrigation factor of CLM significantly
overestimates the irrigation requirement and causes substantial surface runoff. A lower
irrigation factor reduces the runoff associated with intensive irrigation. In order to get a
reasonable estimate of irrigation amounts, irrigation modelling has to consider the right
irrigation timing as well as the right irrigation factor. The irrigation factor should be
calibrated using information on the irrigation frequency and applied irrigation amount, which
are unfortunately in general not available. Apart from government statistics, remote sensing
data could be helpful for determining the irrigation timing and quantity to calibrate the

irrigation factor.

In general, more accurate information about the timing and intensity of irrigation is expected
to significantly improve the modelling of land surface fluxes and the water balance. For the
Northern part of India, the double cropping season and the seasonal variation of the irrigated
area should be taken into account. Without considering the temporal and spatial distribution
of irrigated cropland, the land surface fluxes and water balance will not be precisely

reconstructed. This suggests the need of improved information on the crop-growing pattern,
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irrigation timetable and crop calendars including sowing and harvesting dates in the future,

which can be assisted by remote sensing data.

As the real irrigation and ET validation data for India were not available, the global ET
products based on remote sensing were used as verification. The results suggest that GLEAM
ET data does not represent the temporal variation of ET related to the crop growing cycle and
irrigation input, especially for the first two months of the year. The MODIS product shows an
increase of ET in the first two dry months in the irrigated area of Northern India, and our
simulations with CLM suggest that irrigation may be the cause of it. However, the MODIS
ET product shows data gaps or very low values in the pre-monsoon season. Compared to the
problematic remote sensing based ET estimation, the land model gives us another way of

reconstructing land surface fluxes.

The experiments also indicated that irrigation modelling without considering sub-pixel
heterogeneity might overestimate the soil water deficit and irrigation requirement especially
for the partially irrigated model grid cells. A higher resolution land surface model with higher
resolution irrigation input is therefore expected to provide better results. Land cover
information, LAI and an irrigation map are available at 250 m-500 m resolution, so that
model simulation at such a high spatial resolution could be meaningful, but the computation

time will increase drastically and huge data amounts need to be handled.
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Chapter 6 : Summary and outlook

Optimal irrigation management is essential to avoid unnecessary water usage and securing
the food production in water-scarce regions. Irrigation activity will also affect the energy and
water budgets of land surface, playing an important role in the global water cycle. The
accurate determination of the soil water deficit is important for irrigation scheduling. Land
surface models have been widely used to simulate the soil water content (SWC) and crop
status. Data assimilation (DA) provides a method to optimally combine observations with a
dynamic land surface model (CLM). A central goal of this PhD work was to test the CLM-
DA method for near real-time irrigation scheduling in a real world case, and to explore the
possibility of monitoring and scheduling irrigation by a CRNS probe at medium scale.
Another objective was to analyse the uncertainties with respect to irrigation modelling at the

large scale.

In the first study of this PhD thesis, data assimilation was used to merge real-time SWC
observations from FDR sensors with the land surface model CLM to provide an improved
prediction of root zone soil water deficit. The CLM model predictions including the weather
forecast for the next days, and SWC measured by FDR probes were optimally combined
using the Local Ensemble Transform Kalman Filter (LETKF), a sequential data assimilation
method, to predict soil water deficit for the next few days and schedule irrigation accordingly.
Data assimilation can improve the initial SWC conditions for the CLM model run. In addition,
weather forecasts by the Global Forecast System were used as atmospheric forcing for CLM
to predict short-term SWC. The difference between predicted and targeted SWC was defined
as the water deficit, and the irrigation amount was calculated from the integrated water deficit

over the root zone.

During the irrigation campaign for the Picassent site in 2015 and 2016, three different
irrigation scheduling methods were tested on multiple citrus fields, including the CLM-DA
method, the FAO water balance method and the traditional method based on farmer’s
experience. Compared with the traditionally irrigated fields by farmers, 24 % less irrigation
water on average was needed for the CLM-DA scheduled fields, while the FAO fields were
irrigated with 22% less water. Although the CLM-DA irrigated fields received less irrigation
water, no significant production loss or plant water stress was detected in the CLM-DA fields.
Stem water potential data and SWC recordings of the CLM-DA scheduled fields did not

indicate significant plant water stress during the irrigation period. The FAO water balance
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method is also an efficient irrigation scheduling approach but it is highly dependent on site-
specific empirical parameters. The irrigation estimation by the CLM-DA method depends

strongly on the SWC measurements at different spatial and temporal scales.

Therefore in the second study, the novel technique of Cosmic-ray Neutron Sensing (CRNS)
was tested to extend the observation scale of SWC to allow irrigation scheduling at larger
scales. CRNS is promising for irrigation management as the measurement footprint is
representative for the root-zone at the spatial scale of tens of hectares. The potential of the
CRNS technique for drip irrigation scheduling is explored in the second study (chapter 4) for
the Picassent site, where the citrus fields are drip irrigated. The drip irrigated part covers 8%
of the area. The overall SWC in the CRNS footprint was characterized with a field calibration
method and a root mean square error of less than 0.03 cm®/cm?, but the experimental dataset
indicated methodological limitations to detect drip irrigation. We found that the CRNS
performance to sense the footprint SWC varies significantly along the study period.
Meanwhile the neutron transport simulation URANOS was used to mimic the Picassent site
and to simulate the effect of drip irrigation on the neutron intensity. Both the experimental
data and the simulation results suggested that the large-area neutron response to drip

irrigation is insignificant in our case with a single standard CRNS probe.

The second study showed that neutron transport modelling could be used to assess the
suitability of the CRNS technique for certain applications. Because of the small area of
irrigated patches, short irrigation time and weak irrigation intensity, SWC changes due to drip
irrigation were not detectable from the recorded measured neutron intensity variation.
Although the standard CRNS probe was not able to detect small-scale drip irrigation, the
method might be applicable for larger irrigated areas, in drier regions, or for more intense
irrigation methods. By overcoming the main limitation of statistical noise, the capability of

CRNS could be improved in the future by larger and more efficient neutron detectors.

In the third study, the irrigation demand was estimated by a land surface model to reconstruct
the water storage changes for the Indian subcontinent. The irrigation modelling tends to be
affected by various uncertainties like irrigation frequency, irrigation factor and the
spatiotemporal distribution of areas where and when irrigation is potentially applied. The
analysis of those uncertainties was conducted in the third study of the PhD thesis for the India

subcontinent. The irrigation requirement and hydrological fluxes over India were
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reconstructed by six different simulation experiments with the Community Land Model for

the year 2010.

The multiple simulation scenarios showed that the modelled irrigation requirement and the
land surface fluxes differed between the six scenarios, related to the spatiotemporal
uncertainty of the irrigation map, the irrigation frequency and the irrigation factor. Using a
season-specific irrigation map resulted in a higher transpiration-total evapotranspiration ratio
(T/ET) in the pre-monsoon season compared to other irrigation strategies, implying higher
irrigation efficiency. The remote sensing based evapotranspiration products GLEAM and
MODIS ET were used to compare with simulated model results, showing a similar increasing
ET-trend in the pre-monsoon season as the irrigation induced land surface modelling,
especially for the seasonal irrigation map. We conclude that more accurate temporal
information of irrigation will result in modelled evapotranspiration closer to the
spatiotemporal pattern of evapotranspiration observed by remote sensing. Another conclusion
is that a higher spatial resolution in land surface modelling is needed, or an improved
consideration of sub-grid heterogeneity to improve the estimation of soil water deficit and
irrigation requirement. We also found that daily irrigation scheduling results in larger applied
irrigation amounts, evapotranspiration and also surface runoff than weekly irrigation
scheduling. If in addition the target soil water content is relatively high, intensive irrigation
will result in substantial water loss through surface runoff. This indicates that the standard
target soil water content (and associated irrigation factor) in a land surface model may not
suit irrigation modelling at the regional scale, and should be calibrated as function of

irrigation frequency and reliable statistical data on water consumption.

Overall, our results showed that the CLM-DA method is promising given its water saving
potential and automated remote control, ease of incorporation of real time on-line
measurements and ensemble based predictions of SWC. The advantage of CLM-DA method
is the possibility to integrate many kinds of observation data into the land surface model to
improve the prediction of SWC status and to efficiently design irrigation strategies. Both the
observation quality and model quality can be improved further to be more sophisticated and

cost-efficient, and to be used for precision agriculture.

The application of the CLM-DA irrigation scheduling approach depends on the availability of
SWC measurements at different spatial and time scales, which have to provide useful

information for different irrigation methods. Concerning drip irrigation, the high frequency
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and short duration irrigation application requires real-time observation and high sensitivity of
SWC observations. Therefore, FDR sensors are more suitable than CRNS for monitoring and
scheduling drip irrigation. Possible observations to be assimilated are not only traditional
SWC data, but also other indirect measurements informative about crop water stress, e.g. land
surface temperature measured by drones, as well as ET measurements by eddy covariance or
lysimeter. In this context, the merging of multi-source direct and indirect observations to

improve the prediction of SWC and ET is of special interest.

Concerning the simulation model, a crop growth model would be a good supplement for the
original CLM-DA scheme, which could provide information on the water requirement in the
different growing stages of the crop, and which could directly predict the crop yield. Better
estimates of crop model parameters and a better definition of the SWC threshold for irrigation,
specific for different crop types, growing stages and weather conditions, would further
improve the performance of the CLM-DA method. In this study, DA was proven to be an
efficient way to improve root zone SWC prediction. Furthermore, it can be extended to not
only update SWC but also soil and vegetation model parameters to improve further the
simulation of SWC and crop status. Another extension of this PhD work in the future is to
integrate a coupled model of land surface and subsurface e.g. TerrSysMP (Terrestrial System
Modelling Platform) (Shrestha et al. 2014) into the data assimilation system, so that the

interaction of irrigation activities and groundwater level variations can be better represented.

The application of the CLM-DA for larger areas, including more crop types and irrigation
methods, is also a pending issue. This extension of the CLM-DA based irrigation scheduling
to larger scales would require the integration of remote sensing based SWC observations into
land surface models. However, the large scale modelling of irrigation is affected by various
additional sources of uncertainty like the spatiotemporal distribution of the areas which are
irrigated. Information on the timing and frequency of irrigation can be obtained for smaller
studies at the field scale, but the spatiotemporal extent of irrigation is much more uncertain at
the regional scale. This suggests the need of improved information on crop-growing pattern,
irrigation timetable and crop calendars including sowing and harvesting dates in the future.
Remote sensing data can also be helpful in this assessment. Meanwhile, the large-scale
weather forecasts and in particular the precipitation forecast should also be improved further

to fulfil this task.
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