000878238 001__ 878238
000878238 005__ 20210131031238.0
000878238 0247_ $$2doi$$a10.1063/5.0015048
000878238 0247_ $$2ISSN$$a0003-6951
000878238 0247_ $$2ISSN$$a1077-3118
000878238 0247_ $$2ISSN$$a1520-8842
000878238 0247_ $$2Handle$$a2128/25435
000878238 0247_ $$2WOS$$aWOS:000559784700001
000878238 0247_ $$2altmetric$$aaltmetric:80866510
000878238 037__ $$aFZJ-2020-02707
000878238 082__ $$a530
000878238 1001_ $$0P:(DE-HGF)0$$aSiniscalchi, Marco$$b0
000878238 245__ $$aTemperature-dependent resistivity of alternative metal thin films
000878238 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2020
000878238 3367_ $$2DRIVER$$aarticle
000878238 3367_ $$2DataCite$$aOutput Types/Journal article
000878238 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596545064_335
000878238 3367_ $$2BibTeX$$aARTICLE
000878238 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878238 3367_ $$00$$2EndNote$$aJournal Article
000878238 520__ $$aThe temperature coefficients of the resistivity (TCR) of Cu, Ru, Co, Ir, and W thin films have been investigated as a function of film thickness below 10 nm. Ru, Co, and Ir show bulk-like TCR values that are rather independent of the thickness, whereas the TCR of Cu increases strongly with the decreasing thickness. Thin W films show negative TCR values, which can be linked to high disorder. The results are qualitatively consistent with a temperature-dependent semiclassical thin-film resistivity model that takes into account phonon, surface, and grain boundary scattering. The results indicate that the thin-film resistivity of Ru, Co, and Ir is dominated by grain boundary scattering, whereas that of Cu is strongly influenced by surface scattering.This work was supported by imec's industrial affiliation program on nano-interconnects. M.S. acknowledges co-funding by the Erasmus+ program of the European Union. The authors would like to thank Sofie Mertens and Thomas Witters (imec) for the support of the PVD depositions as well as imec's Materials and Components Analysis (MCA) Laboratory for the electron micrographs, the atomic force microscopy, and the Rutherford backscattering measurements.
000878238 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000878238 588__ $$aDataset connected to CrossRef
000878238 7001_ $$0P:(DE-HGF)0$$aTierno, Davide$$b1
000878238 7001_ $$0P:(DE-Juel1)180184$$aMoors, Kristof$$b2$$ufzj
000878238 7001_ $$0P:(DE-HGF)0$$aTőkei, Zsolt$$b3
000878238 7001_ $$0P:(DE-HGF)0$$aAdelmann, Christoph$$b4$$eCorresponding author
000878238 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/5.0015048$$gVol. 117, no. 4, p. 043104 -$$n4$$p043104 -$$tApplied physics letters$$v117$$x1077-3118$$y2020
000878238 8564_ $$uhttps://juser.fz-juelich.de/record/878238/files/5.0015048.pdf$$yPublished on 2020-07-29. Available in OpenAccess from 2021-07-29.
000878238 8564_ $$uhttps://juser.fz-juelich.de/record/878238/files/5.0015048.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-07-29. Available in OpenAccess from 2021-07-29.
000878238 909CO $$ooai:juser.fz-juelich.de:878238$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878238 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180184$$aForschungszentrum Jülich$$b2$$kFZJ
000878238 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000878238 9141_ $$y2020
000878238 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000878238 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000878238 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-14
000878238 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000878238 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878238 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-14
000878238 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000878238 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-14
000878238 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000878238 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000878238 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000878238 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2018$$d2020-01-14
000878238 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-14$$wger
000878238 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000878238 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-14
000878238 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-14$$wger
000878238 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000878238 920__ $$lyes
000878238 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000878238 980__ $$ajournal
000878238 980__ $$aVDB
000878238 980__ $$aUNRESTRICTED
000878238 980__ $$aI:(DE-Juel1)PGI-9-20110106
000878238 9801_ $$aFullTexts