Home > Publications database > Temperature-dependent resistivity of alternative metal thin films > print |
001 | 878238 | ||
005 | 20210131031238.0 | ||
024 | 7 | _ | |a 10.1063/5.0015048 |2 doi |
024 | 7 | _ | |a 0003-6951 |2 ISSN |
024 | 7 | _ | |a 1077-3118 |2 ISSN |
024 | 7 | _ | |a 1520-8842 |2 ISSN |
024 | 7 | _ | |a 2128/25435 |2 Handle |
024 | 7 | _ | |a WOS:000559784700001 |2 WOS |
024 | 7 | _ | |a altmetric:80866510 |2 altmetric |
037 | _ | _ | |a FZJ-2020-02707 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Siniscalchi, Marco |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Temperature-dependent resistivity of alternative metal thin films |
260 | _ | _ | |a Melville, NY |c 2020 |b American Inst. of Physics |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1596545064_335 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The temperature coefficients of the resistivity (TCR) of Cu, Ru, Co, Ir, and W thin films have been investigated as a function of film thickness below 10 nm. Ru, Co, and Ir show bulk-like TCR values that are rather independent of the thickness, whereas the TCR of Cu increases strongly with the decreasing thickness. Thin W films show negative TCR values, which can be linked to high disorder. The results are qualitatively consistent with a temperature-dependent semiclassical thin-film resistivity model that takes into account phonon, surface, and grain boundary scattering. The results indicate that the thin-film resistivity of Ru, Co, and Ir is dominated by grain boundary scattering, whereas that of Cu is strongly influenced by surface scattering.This work was supported by imec's industrial affiliation program on nano-interconnects. M.S. acknowledges co-funding by the Erasmus+ program of the European Union. The authors would like to thank Sofie Mertens and Thomas Witters (imec) for the support of the PVD depositions as well as imec's Materials and Components Analysis (MCA) Laboratory for the electron micrographs, the atomic force microscopy, and the Rutherford backscattering measurements. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Tierno, Davide |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Moors, Kristof |0 P:(DE-Juel1)180184 |b 2 |u fzj |
700 | 1 | _ | |a Tőkei, Zsolt |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Adelmann, Christoph |0 P:(DE-HGF)0 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.1063/5.0015048 |g Vol. 117, no. 4, p. 043104 - |0 PERI:(DE-600)1469436-0 |n 4 |p 043104 - |t Applied physics letters |v 117 |y 2020 |x 1077-3118 |
856 | 4 | _ | |y Published on 2020-07-29. Available in OpenAccess from 2021-07-29. |u https://juser.fz-juelich.de/record/878238/files/5.0015048.pdf |
856 | 4 | _ | |y Published on 2020-07-29. Available in OpenAccess from 2021-07-29. |x pdfa |u https://juser.fz-juelich.de/record/878238/files/5.0015048.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:878238 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)180184 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-14 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-14 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-14 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-14 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-14 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-14 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL PHYS LETT : 2018 |d 2020-01-14 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-01-14 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-01-14 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-14 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-14 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|