001     878238
005     20210131031238.0
024 7 _ |a 10.1063/5.0015048
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a 1520-8842
|2 ISSN
024 7 _ |a 2128/25435
|2 Handle
024 7 _ |a WOS:000559784700001
|2 WOS
024 7 _ |a altmetric:80866510
|2 altmetric
037 _ _ |a FZJ-2020-02707
082 _ _ |a 530
100 1 _ |a Siniscalchi, Marco
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Temperature-dependent resistivity of alternative metal thin films
260 _ _ |a Melville, NY
|c 2020
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1596545064_335
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The temperature coefficients of the resistivity (TCR) of Cu, Ru, Co, Ir, and W thin films have been investigated as a function of film thickness below 10 nm. Ru, Co, and Ir show bulk-like TCR values that are rather independent of the thickness, whereas the TCR of Cu increases strongly with the decreasing thickness. Thin W films show negative TCR values, which can be linked to high disorder. The results are qualitatively consistent with a temperature-dependent semiclassical thin-film resistivity model that takes into account phonon, surface, and grain boundary scattering. The results indicate that the thin-film resistivity of Ru, Co, and Ir is dominated by grain boundary scattering, whereas that of Cu is strongly influenced by surface scattering.This work was supported by imec's industrial affiliation program on nano-interconnects. M.S. acknowledges co-funding by the Erasmus+ program of the European Union. The authors would like to thank Sofie Mertens and Thomas Witters (imec) for the support of the PVD depositions as well as imec's Materials and Components Analysis (MCA) Laboratory for the electron micrographs, the atomic force microscopy, and the Rutherford backscattering measurements.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Tierno, Davide
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Moors, Kristof
|0 P:(DE-Juel1)180184
|b 2
|u fzj
700 1 _ |a Tőkei, Zsolt
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Adelmann, Christoph
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1063/5.0015048
|g Vol. 117, no. 4, p. 043104 -
|0 PERI:(DE-600)1469436-0
|n 4
|p 043104 -
|t Applied physics letters
|v 117
|y 2020
|x 1077-3118
856 4 _ |y Published on 2020-07-29. Available in OpenAccess from 2021-07-29.
|u https://juser.fz-juelich.de/record/878238/files/5.0015048.pdf
856 4 _ |y Published on 2020-07-29. Available in OpenAccess from 2021-07-29.
|x pdfa
|u https://juser.fz-juelich.de/record/878238/files/5.0015048.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878238
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180184
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-14
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-14
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2018
|d 2020-01-14
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-01-14
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-14
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-14
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21