001     878239
005     20230505130536.0
024 7 _ |a 10.1016/j.actamat.2020.01.043
|2 doi
024 7 _ |a 1359-6454
|2 ISSN
024 7 _ |a 1873-2453
|2 ISSN
024 7 _ |a 2128/25623
|2 Handle
024 7 _ |a altmetric:74714029
|2 altmetric
024 7 _ |a WOS:000518706700012
|2 WOS
037 _ _ |a FZJ-2020-02708
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Jiang, Ting-Ting
|0 P:(DE-HGF)0
|b 0
245 _ _ |a In situ study of vacancy disordering in crystalline phase-change materials under electron beam irradiation
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599652923_20792
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Unconventionally high amount of atomic vacancies up to more than 10% are known to form in Ge-Sb-Te crystals upon rapid crystallization from the amorphous phase. Upon thermal annealing, an ordering process of these atomic vacancies is observed, triggering a structural transition from the recrystallized rocksalt structure to a stable layered trigonal structure and a transition from insulator to metal. In this work, we demonstrate an opposite vacancy disordering process upon extensive electron beam irradiation, which is accompanied by the reverse transition from the stable trigonal phase to the metastable cubic phase. The combined in situ transmission electron microscopy experiments and density functional theory nudged elastic band calculations reveal three transition stages, including (I) the vacancy diffusion in the trigonal phase, (II) the change in atomic stacking, and (III) the disappearance of vacancy-rich planes. The mechanism of vacancy disordering is attributed to kinetic knock-on collision effects of the high-energy electron beam, which prevail over the heating effects.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|x 0
|f POF III
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wang, Xu-Dong
|0 P:(DE-Juel1)170073
|b 1
700 1 _ |a Wang, Jiang-Jing
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a ZHOU, Wenyu
|0 P:(DE-Juel1)176867
|b 3
|u fzj
700 1 _ |a Zhang, Dan-Li
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lu, Lu
|0 P:(DE-Juel1)161232
|b 5
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 6
700 1 _ |a Wuttig, Matthias
|0 P:(DE-Juel1)176716
|b 7
700 1 _ |a Mazzarello, Riccardo
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zhang, Wei
|0 0000-0002-0720-4781
|b 9
|e Corresponding author
773 _ _ |a 10.1016/j.actamat.2020.01.043
|g Vol. 187, p. 103 - 111
|0 PERI:(DE-600)2014621-8
|p 103 - 111
|t Acta materialia
|v 187
|y 2020
|x 1359-6454
856 4 _ |y Published on 2020-01-27. Available in OpenAccess from 2022-01-27.
|u https://juser.fz-juelich.de/record/878239/files/paper_revision.pdf
856 4 _ |y Published on 2020-01-27. Available in OpenAccess from 2022-01-27.
|x pdfa
|u https://juser.fz-juelich.de/record/878239/files/paper_revision.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878239
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)170073
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176867
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-17
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA MATER : 2018
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA MATER : 2018
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21