000878240 001__ 878240
000878240 005__ 20230505130533.0
000878240 0247_ $$2doi$$a10.1021/acsnano.9b10057
000878240 0247_ $$2ISSN$$a1936-0851
000878240 0247_ $$2ISSN$$a1936-086X
000878240 0247_ $$2Handle$$a2128/25625
000878240 0247_ $$2altmetric$$aaltmetric:79553696
000878240 0247_ $$2pmid$$apmid:32275386
000878240 0247_ $$2WOS$$aWOS:000529895500065
000878240 037__ $$aFZJ-2020-02709
000878240 041__ $$aEnglish
000878240 082__ $$a540
000878240 1001_ $$0P:(DE-HGF)0$$aWang, Xudong$$b0
000878240 245__ $$aSub-Angstrom Characterization of the Structural Origin for High In-Plane Anisotropy in 2D GeS 2
000878240 260__ $$aWashington, DC$$bSoc.$$c2020
000878240 3367_ $$2DRIVER$$aarticle
000878240 3367_ $$2DataCite$$aOutput Types/Journal article
000878240 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599655038_20791
000878240 3367_ $$2BibTeX$$aARTICLE
000878240 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878240 3367_ $$00$$2EndNote$$aJournal Article
000878240 520__ $$aMaterials with layered crystal structures and high in-plane anisotropy, such as black phosphorus, present unique properties and thus promise for applications in electronic and photonic devices. Recently, the layered structures of GeS2 and GeSe2 were utilized for high-performance polarization-sensitive photodetection in the short wavelength region due to their high in-plane optical anisotropy and wide band gap. The highly complex, low-symmetric (monoclinic) crystal structures are at the origin of the high in-plane optical anisotropy, but the structural nature of the corresponding nanostructures remains to be fully understood. Here, we present an atomic-scale characterization of monoclinic GeS2 nanostructures and quantify the in-plane structural anisotropy at the sub-angstrom level in real space by Cs-corrected scanning transmission electron microscopy. We elucidate the origin of this high in-plane anisotropy in terms of ordered and disordered arrangement of [GeS4] tetrahedra in GeS2 monolayers, through density functional theory (DFT) calculations and orbital-based bonding analyses. We also demonstrate high in-plane mechanical, electronic, and optical anisotropies in monolayer GeS2 and envision phase transitions under uniaxial strain that could potentially be exploited for nonvolatile memory applications.
000878240 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878240 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
000878240 588__ $$aDataset connected to CrossRef
000878240 7001_ $$0P:(DE-HGF)0$$aTan, Jieling$$b1
000878240 7001_ $$0P:(DE-HGF)0$$aHan, Chengqian$$b2
000878240 7001_ $$0P:(DE-HGF)0$$aWang, Jiang-Jing$$b3$$eCorresponding author
000878240 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b4
000878240 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b5
000878240 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b6
000878240 7001_ $$00000-0001-6873-0278$$aDeringer, Volker L.$$b7
000878240 7001_ $$00000-0002-2606-4833$$aZhou, Jian$$b8
000878240 7001_ $$00000-0002-0720-4781$$aZhang, Wei$$b9
000878240 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.9b10057$$gVol. 14, no. 4, p. 4456 - 4462$$n4$$p4456 - 4462$$tACS nano$$v14$$x1936-086X$$y2020
000878240 8564_ $$uhttps://juser.fz-juelich.de/record/878240/files/acsnano.9b10057.pdf$$yRestricted
000878240 8564_ $$uhttps://juser.fz-juelich.de/record/878240/files/paper_2DGeS2_final.pdf$$yPublished on 2020-04-10. Available in OpenAccess from 2021-04-10.
000878240 8564_ $$uhttps://juser.fz-juelich.de/record/878240/files/acsnano.9b10057.pdf?subformat=pdfa$$xpdfa$$yRestricted
000878240 909CO $$ooai:juser.fz-juelich.de:878240$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b5$$kFZJ
000878240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b6$$kFZJ
000878240 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878240 9141_ $$y2020
000878240 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000878240 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000878240 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878240 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2018$$d2020-02-27
000878240 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2018$$d2020-02-27
000878240 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000878240 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000878240 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000878240 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000878240 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000878240 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000878240 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000878240 920__ $$lyes
000878240 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878240 980__ $$ajournal
000878240 980__ $$aVDB
000878240 980__ $$aUNRESTRICTED
000878240 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878240 9801_ $$aFullTexts