001     878240
005     20230505130533.0
024 7 _ |a 10.1021/acsnano.9b10057
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 2128/25625
|2 Handle
024 7 _ |a altmetric:79553696
|2 altmetric
024 7 _ |a pmid:32275386
|2 pmid
024 7 _ |a WOS:000529895500065
|2 WOS
037 _ _ |a FZJ-2020-02709
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Wang, Xudong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Sub-Angstrom Characterization of the Structural Origin for High In-Plane Anisotropy in 2D GeS 2
260 _ _ |a Washington, DC
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599655038_20791
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Materials with layered crystal structures and high in-plane anisotropy, such as black phosphorus, present unique properties and thus promise for applications in electronic and photonic devices. Recently, the layered structures of GeS2 and GeSe2 were utilized for high-performance polarization-sensitive photodetection in the short wavelength region due to their high in-plane optical anisotropy and wide band gap. The highly complex, low-symmetric (monoclinic) crystal structures are at the origin of the high in-plane optical anisotropy, but the structural nature of the corresponding nanostructures remains to be fully understood. Here, we present an atomic-scale characterization of monoclinic GeS2 nanostructures and quantify the in-plane structural anisotropy at the sub-angstrom level in real space by Cs-corrected scanning transmission electron microscopy. We elucidate the origin of this high in-plane anisotropy in terms of ordered and disordered arrangement of [GeS4] tetrahedra in GeS2 monolayers, through density functional theory (DFT) calculations and orbital-based bonding analyses. We also demonstrate high in-plane mechanical, electronic, and optical anisotropies in monolayer GeS2 and envision phase transitions under uniaxial strain that could potentially be exploited for nonvolatile memory applications.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|x 0
|f POF III
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Tan, Jieling
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Han, Chengqian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wang, Jiang-Jing
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Lu, Lu
|0 P:(DE-Juel1)161232
|b 4
700 1 _ |a Du, Hongchu
|0 P:(DE-Juel1)145710
|b 5
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 6
700 1 _ |a Deringer, Volker L.
|0 0000-0001-6873-0278
|b 7
700 1 _ |a Zhou, Jian
|0 0000-0002-2606-4833
|b 8
700 1 _ |a Zhang, Wei
|0 0000-0002-0720-4781
|b 9
773 _ _ |a 10.1021/acsnano.9b10057
|g Vol. 14, no. 4, p. 4456 - 4462
|0 PERI:(DE-600)2383064-5
|n 4
|p 4456 - 4462
|t ACS nano
|v 14
|y 2020
|x 1936-086X
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/878240/files/acsnano.9b10057.pdf
856 4 _ |y Published on 2020-04-10. Available in OpenAccess from 2021-04-10.
|u https://juser.fz-juelich.de/record/878240/files/paper_2DGeS2_final.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/878240/files/acsnano.9b10057.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878240
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130736
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2018
|d 2020-02-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS NANO : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21