000878248 001__ 878248
000878248 005__ 20210130005510.0
000878248 0247_ $$2doi$$a10.1021/acsami.8b18429
000878248 0247_ $$2ISSN$$a1944-8244
000878248 0247_ $$2ISSN$$a1944-8252
000878248 0247_ $$2altmetric$$aaltmetric:70431023
000878248 0247_ $$2pmid$$apmid:30640435
000878248 0247_ $$2WOS$$aWOS:000458347900060
000878248 037__ $$aFZJ-2020-02717
000878248 041__ $$aEnglish
000878248 082__ $$a600
000878248 1001_ $$0P:(DE-HGF)0$$aLiang, Zhongshuai$$b0
000878248 245__ $$aAll-Inorganic Flexible Embedded Thin-Film Capacitors for Dielectric Energy Storage with High Performance
000878248 260__ $$aWashington, DC$$bSoc.$$c2019
000878248 3367_ $$2DRIVER$$aarticle
000878248 3367_ $$2DataCite$$aOutput Types/Journal article
000878248 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596696441_32110
000878248 3367_ $$2BibTeX$$aARTICLE
000878248 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878248 3367_ $$00$$2EndNote$$aJournal Article
000878248 520__ $$aAs passive components in flexible electronics, the dielectric capacitors for energy storage are facing the challenges of flexibility and capability for integration and miniaturization. In this work, the all-inorganic flexible dielectric film capacitors have been obtained. The flexible capacitors show a desirable recoverable energy density (Wrec) of 40.6 J/cm3 and a good energy efficiency (η) of 68.9%. Moreover, they have no obvious deterioration on both the Wrec and η after 104 times of mechanical bending cycles or under the bending state with a curvature radius of 4 mm. Besides, the outstanding stability of the capacitors against cycle fatigue over fast 106 charge–discharge cycles is demonstrated. Most importantly, they work properly at a wide temperature range from −120 to 150 °C with Wrec > 15 J/cm3 and η > 70%. These fascinating performances endow the flexible capacitors with huge potential application in the future “microenergy storage” system in flexible electronics.
000878248 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878248 588__ $$aDataset connected to CrossRef
000878248 7001_ $$0P:(DE-HGF)0$$aLiu, Ming$$b1$$eCorresponding author
000878248 7001_ $$0P:(DE-HGF)0$$aShen, Lvkang$$b2
000878248 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b3
000878248 7001_ $$00000-0002-7824-7930$$aMa, Chunrui$$b4
000878248 7001_ $$00000-0003-3689-5996$$aLu, Xiaoli$$b5
000878248 7001_ $$0P:(DE-HGF)0$$aLou, Xiaojie$$b6
000878248 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b7
000878248 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.8b18429$$gVol. 11, no. 5, p. 5247 - 5255$$n5$$p5247 - 5255$$tACS applied materials & interfaces$$v11$$x1944-8252$$y2019
000878248 8564_ $$uhttps://juser.fz-juelich.de/record/878248/files/acsami.8b18429.pdf
000878248 8564_ $$uhttps://juser.fz-juelich.de/record/878248/files/acsami.8b18429.pdf?subformat=pdfa$$xpdfa
000878248 909CO $$ooai:juser.fz-juelich.de:878248$$pVDB
000878248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b7$$kFZJ
000878248 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878248 9141_ $$y2020
000878248 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000878248 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05
000878248 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-05
000878248 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000878248 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-05
000878248 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000878248 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000878248 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000878248 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-05
000878248 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-05
000878248 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2018$$d2020-01-05
000878248 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2018$$d2020-01-05
000878248 920__ $$lyes
000878248 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878248 980__ $$ajournal
000878248 980__ $$aVDB
000878248 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878248 980__ $$aUNRESTRICTED