000878250 001__ 878250
000878250 005__ 20210130005511.0
000878250 0247_ $$2doi$$a10.1016/j.nanoen.2019.05.076
000878250 0247_ $$2ISSN$$a2211-2855
000878250 0247_ $$2ISSN$$a2211-3282
000878250 0247_ $$2WOS$$aWOS:000474636100078
000878250 037__ $$aFZJ-2020-02719
000878250 041__ $$aEnglish
000878250 082__ $$a660
000878250 1001_ $$0P:(DE-HGF)0$$aFan, Qiaolan$$b0
000878250 245__ $$aRealization of high energy density in an ultra-wide temperature range through engineering of ferroelectric sandwich structures
000878250 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000878250 3367_ $$2DRIVER$$aarticle
000878250 3367_ $$2DataCite$$aOutput Types/Journal article
000878250 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596699880_32110
000878250 3367_ $$2BibTeX$$aARTICLE
000878250 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878250 3367_ $$00$$2EndNote$$aJournal Article
000878250 520__ $$aThin film dielectrics are the most selected materials for many power electronics owing to their inherent advantages, such as high power density, fast charging-discharging, and long lifetime. Nowadays, additional demands for the film dielectrics are the high performances under harsh operating conditions, e.g. at high temperatures, which is highly favourable to significantly reduce the size and cost of energy devices. Here, we demonstrated that through design and optimization of the film systems with 1 mol% SiO2-doped BaZr0.35Ti0.65O3 layer sandwiched between two undoped BaZr0.35Ti0.65O3 layers, it is capable to concomitantly enhance breakdown strength and electrical polarization of the systems. The optimized sandwich-structure films yield a greatly improved discharged energy densities of ~130.1 J/cm3 with a high charge-discharge efficiency of ~73.8% at room temperature, as well as retain an ultrahigh discharged energy densities of ~77.8 J/cm3 in the ultra-wide temperature range from −100 to 200 °C. The presented combination of property modulation with structure engineering paves an effective way to meet the increasingly technological challenges and the requirements of modern electrical energy storage applications.
000878250 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878250 588__ $$aDataset connected to CrossRef
000878250 7001_ $$0P:(DE-HGF)0$$aMa, Chunrui$$b1$$eCorresponding author
000878250 7001_ $$0P:(DE-HGF)0$$aLi, Yi$$b2
000878250 7001_ $$0P:(DE-HGF)0$$aLiang, Zhongshuai$$b3
000878250 7001_ $$0P:(DE-HGF)0$$aCheng, Sheng$$b4
000878250 7001_ $$0P:(DE-HGF)0$$aGuo, Mengyao$$b5
000878250 7001_ $$0P:(DE-HGF)0$$aDai, Yanzhu$$b6
000878250 7001_ $$0P:(DE-HGF)0$$aMa, Chuansheng$$b7
000878250 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b8
000878250 7001_ $$0P:(DE-Juel1)161531$$aWang, Wei$$b9
000878250 7001_ $$0P:(DE-HGF)0$$aWang, Linghang$$b10
000878250 7001_ $$0P:(DE-HGF)0$$aLou, Xiaojie$$b11
000878250 7001_ $$0P:(DE-Juel1)173033$$aLiu, Ming$$b12
000878250 7001_ $$0P:(DE-Juel1)184889$$aWang, Hong$$b13
000878250 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b14
000878250 773__ $$0PERI:(DE-600)2648700-7$$a10.1016/j.nanoen.2019.05.076$$gVol. 62, p. 725 - 733$$p725 - 733$$tNano energy$$v62$$x2211-2855$$y2019
000878250 909CO $$ooai:juser.fz-juelich.de:878250$$pVDB
000878250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173033$$aForschungszentrum Jülich$$b12$$kFZJ
000878250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184889$$aForschungszentrum Jülich$$b13$$kFZJ
000878250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b14$$kFZJ
000878250 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878250 9141_ $$y2020
000878250 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO ENERGY : 2018$$d2020-01-02
000878250 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-02
000878250 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-02
000878250 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-02
000878250 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-02
000878250 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-02
000878250 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-02
000878250 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-02
000878250 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-02
000878250 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNANO ENERGY : 2018$$d2020-01-02
000878250 920__ $$lyes
000878250 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878250 980__ $$ajournal
000878250 980__ $$aVDB
000878250 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878250 980__ $$aUNRESTRICTED