001     878250
005     20210130005511.0
024 7 _ |a 10.1016/j.nanoen.2019.05.076
|2 doi
024 7 _ |a 2211-2855
|2 ISSN
024 7 _ |a 2211-3282
|2 ISSN
024 7 _ |a WOS:000474636100078
|2 WOS
037 _ _ |a FZJ-2020-02719
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Fan, Qiaolan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Realization of high energy density in an ultra-wide temperature range through engineering of ferroelectric sandwich structures
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1596699880_32110
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Thin film dielectrics are the most selected materials for many power electronics owing to their inherent advantages, such as high power density, fast charging-discharging, and long lifetime. Nowadays, additional demands for the film dielectrics are the high performances under harsh operating conditions, e.g. at high temperatures, which is highly favourable to significantly reduce the size and cost of energy devices. Here, we demonstrated that through design and optimization of the film systems with 1 mol% SiO2-doped BaZr0.35Ti0.65O3 layer sandwiched between two undoped BaZr0.35Ti0.65O3 layers, it is capable to concomitantly enhance breakdown strength and electrical polarization of the systems. The optimized sandwich-structure films yield a greatly improved discharged energy densities of ~130.1 J/cm3 with a high charge-discharge efficiency of ~73.8% at room temperature, as well as retain an ultrahigh discharged energy densities of ~77.8 J/cm3 in the ultra-wide temperature range from −100 to 200 °C. The presented combination of property modulation with structure engineering paves an effective way to meet the increasingly technological challenges and the requirements of modern electrical energy storage applications.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ma, Chunrui
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Li, Yi
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Liang, Zhongshuai
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Cheng, Sheng
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Guo, Mengyao
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dai, Yanzhu
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ma, Chuansheng
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Lu, Lu
|0 P:(DE-Juel1)161232
|b 8
700 1 _ |a Wang, Wei
|0 P:(DE-Juel1)161531
|b 9
700 1 _ |a Wang, Linghang
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lou, Xiaojie
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Liu, Ming
|0 P:(DE-Juel1)173033
|b 12
700 1 _ |a Wang, Hong
|0 P:(DE-Juel1)184889
|b 13
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 14
773 _ _ |a 10.1016/j.nanoen.2019.05.076
|g Vol. 62, p. 725 - 733
|0 PERI:(DE-600)2648700-7
|p 725 - 733
|t Nano energy
|v 62
|y 2019
|x 2211-2855
909 C O |o oai:juser.fz-juelich.de:878250
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)173033
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)184889
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)130736
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO ENERGY : 2018
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NANO ENERGY : 2018
|d 2020-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21