000878251 001__ 878251
000878251 005__ 20210130005511.0
000878251 0247_ $$2doi$$a10.1016/j.jmst.2019.08.039
000878251 0247_ $$2ISSN$$a1005-0302
000878251 0247_ $$2ISSN$$a1941-1162
000878251 0247_ $$2Handle$$a2128/25737
000878251 0247_ $$2WOS$$aWOS:000510493300004
000878251 037__ $$aFZJ-2020-02720
000878251 041__ $$aEnglish
000878251 082__ $$a670
000878251 1001_ $$0P:(DE-Juel1)178047$$aLiu, Kun$$b0
000878251 245__ $$aAtomic-scale investigation of spinel LiFe5O8 thin films on SrTiO3 (001) substrates
000878251 260__ $$aShenyang$$bEd. Board, Journal of Materials Science & Technology$$c2020
000878251 3367_ $$2DRIVER$$aarticle
000878251 3367_ $$2DataCite$$aOutput Types/Journal article
000878251 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600953731_17521
000878251 3367_ $$2BibTeX$$aARTICLE
000878251 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878251 3367_ $$00$$2EndNote$$aJournal Article
000878251 520__ $$aMicrostructural properties of spinel LiFe5O8 (LFO) films grown on (001)-oriented SrTiO3 (STO) substrates have been investigated at the atomic-scale by advanced electron microscopy techniques. Two types of orientation relationship (OR) between the LFO films and the STO substrates have been determined, cube-on-cube and (111)[ 10]LFO//(111)[1 0]STO. Antiphase boundaries (APBs) and three types of twin boundaries (TBs) form within the LFO films, and the propagation of TBs and APBs results in their complex interactions. In most cases, interactions between TBs and APBs change the type of TBs and terminate the propagation of APBs since the APBs introduce a displacement vector of (a/4)〈110〉 into the TBs. In addition, the interactions between two coherent TBs are observed to generate the incoherent TB. The epitaxial strain of the LFO/STO (001) heterosystem can be released by the formation of TBs and APBs in the films and misfit dislocations at the interface. Considering that the magnetic coupling across the APBs and TBs can lead to novel physical properties, the appearance of APBs and TBs with a high density in the LFO films would affect the magnetic properties of the films.
000878251 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878251 588__ $$aDataset connected to CrossRef
000878251 7001_ $$0P:(DE-HGF)0$$aZhang, Ruyi$$b1
000878251 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b2
000878251 7001_ $$0P:(DE-HGF)0$$aMi, Shaobo$$b3$$eCorresponding author
000878251 7001_ $$0P:(DE-HGF)0$$aLiu, Ming$$b4
000878251 7001_ $$0P:(DE-HGF)0$$aWang, Hong$$b5
000878251 7001_ $$0P:(DE-HGF)0$$aWu, Shengqiang$$b6
000878251 7001_ $$0P:(DE-HGF)0$$aJia, Chunlin$$b7
000878251 773__ $$0PERI:(DE-600)2431914-4$$a10.1016/j.jmst.2019.08.039$$gVol. 40, p. 31 - 38$$p31 - 38$$tJournal of materials science & technology$$v40$$x1005-0302$$y2020
000878251 8564_ $$uhttps://juser.fz-juelich.de/record/878251/files/Manu-revised%20%28JMST%29-with%20figures.pdf$$yPublished on 2019-11-05. Available in OpenAccess from 2020-11-05.
000878251 909CO $$ooai:juser.fz-juelich.de:878251$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178047$$aForschungszentrum Jülich$$b0$$kFZJ
000878251 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878251 9141_ $$y2020
000878251 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000878251 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000878251 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-06
000878251 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878251 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878251 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER SCI TECHNOL : 2018$$d2020-01-06
000878251 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000878251 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000878251 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-01-06$$wger
000878251 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER SCI TECHNOL : 2018$$d2020-01-06
000878251 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-06
000878251 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000878251 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-06$$wger
000878251 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000878251 920__ $$lyes
000878251 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878251 980__ $$ajournal
000878251 980__ $$aVDB
000878251 980__ $$aUNRESTRICTED
000878251 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878251 9801_ $$aFullTexts