001     878251
005     20210130005511.0
024 7 _ |a 10.1016/j.jmst.2019.08.039
|2 doi
024 7 _ |a 1005-0302
|2 ISSN
024 7 _ |a 1941-1162
|2 ISSN
024 7 _ |a 2128/25737
|2 Handle
024 7 _ |a WOS:000510493300004
|2 WOS
037 _ _ |a FZJ-2020-02720
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Liu, Kun
|0 P:(DE-Juel1)178047
|b 0
245 _ _ |a Atomic-scale investigation of spinel LiFe5O8 thin films on SrTiO3 (001) substrates
260 _ _ |a Shenyang
|c 2020
|b Ed. Board, Journal of Materials Science & Technology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600953731_17521
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Microstructural properties of spinel LiFe5O8 (LFO) films grown on (001)-oriented SrTiO3 (STO) substrates have been investigated at the atomic-scale by advanced electron microscopy techniques. Two types of orientation relationship (OR) between the LFO films and the STO substrates have been determined, cube-on-cube and (111)[ 10]LFO//(111)[1 0]STO. Antiphase boundaries (APBs) and three types of twin boundaries (TBs) form within the LFO films, and the propagation of TBs and APBs results in their complex interactions. In most cases, interactions between TBs and APBs change the type of TBs and terminate the propagation of APBs since the APBs introduce a displacement vector of (a/4)〈110〉 into the TBs. In addition, the interactions between two coherent TBs are observed to generate the incoherent TB. The epitaxial strain of the LFO/STO (001) heterosystem can be released by the formation of TBs and APBs in the films and misfit dislocations at the interface. Considering that the magnetic coupling across the APBs and TBs can lead to novel physical properties, the appearance of APBs and TBs with a high density in the LFO films would affect the magnetic properties of the films.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhang, Ruyi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lu, Lu
|0 P:(DE-Juel1)161232
|b 2
700 1 _ |a Mi, Shaobo
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Liu, Ming
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wang, Hong
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wu, Shengqiang
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jia, Chunlin
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1016/j.jmst.2019.08.039
|g Vol. 40, p. 31 - 38
|0 PERI:(DE-600)2431914-4
|p 31 - 38
|t Journal of materials science & technology
|v 40
|y 2020
|x 1005-0302
856 4 _ |u https://juser.fz-juelich.de/record/878251/files/Manu-revised%20%28JMST%29-with%20figures.pdf
|y Published on 2019-11-05. Available in OpenAccess from 2020-11-05.
909 C O |o oai:juser.fz-juelich.de:878251
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178047
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-01-06
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER SCI TECHNOL : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-06
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2020-01-06
|w ger
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MATER SCI TECHNOL : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-06
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21