000878252 001__ 878252
000878252 005__ 20210130005512.0
000878252 0247_ $$2doi$$a10.1074/jbc.RA120.014478
000878252 0247_ $$2ISSN$$a0021-9258
000878252 0247_ $$2ISSN$$a1067-8816
000878252 0247_ $$2ISSN$$a1083-351X
000878252 0247_ $$2Handle$$a2128/25787
000878252 0247_ $$2altmetric$$aaltmetric:86226348
000878252 0247_ $$2pmid$$apmid:32719006
000878252 0247_ $$2WOS$$aWOS:000572412900015
000878252 037__ $$aFZJ-2020-02721
000878252 082__ $$a540
000878252 1001_ $$00000-0002-0823-8983$$aDall, Elfriede$$b0
000878252 245__ $$aStructural and functional studies of Arabidopsis thaliana legumain beta reveal isoform specific mechanisms of activation and substrate recognition
000878252 260__ $$aBethesda, Md.$$bSoc.72889$$c2020
000878252 3367_ $$2DRIVER$$aarticle
000878252 3367_ $$2DataCite$$aOutput Types/Journal article
000878252 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601464371_25281
000878252 3367_ $$2BibTeX$$aARTICLE
000878252 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878252 3367_ $$00$$2EndNote$$aJournal Article
000878252 520__ $$aThe vacuolar cysteine protease legumain plays important functions in seed maturation and plant programmed cell death. Because of their dual protease and ligase activity, plant legumains have become of particular biotechnological interest, e.g. for the synthesis of cyclic peptides for drug design or for protein engineering. However, the molecular mechanisms behind their dual protease and ligase activities are still poorly understood, limiting their applications. Here, we present the crystal structure of Arabidopsis thaliana legumain isoform β (AtLEGβ) in its zymogen state. Combining structural and biochemical experiments, we show for the first time that plant legumains encode distinct, isoform-specific activation mechanisms. Whereas the autocatalytic activation of isoform γ (AtLEGγ) is controlled by the latency-conferring dimer state, the activation of the monomeric AtLEGβ is concentration independent. Additionally, in AtLEGβ the plant-characteristic two-chain intermediate state is stabilized by hydrophobic rather than ionic interactions, as in AtLEGγ, resulting in significantly different pH stability profiles. The crystal structure of AtLEGβ revealed unrestricted nonprime substrate binding pockets, consistent with the broad substrate specificity, as determined by degradomic assays. Further to its protease activity, we show that AtLEGβ exhibits a true peptide ligase activity. Whereas cleavage-dependent transpeptidase activity has been reported for other plant legumains, AtLEGβ is the first example of a plant legumain capable of linking free termini. The discovery of these isoform-specific differences will allow us to identify and rationally design efficient ligases with application in biotechnology and drug development.
000878252 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000878252 536__ $$0G:(EU-Grant)639905$$aProPlantStress - Proteolytic processing in plant stress signal transduction and responses to abiotic stress and pathogen attack (639905)$$c639905$$fERC-2014-STG$$x1
000878252 588__ $$aDataset connected to CrossRef
000878252 7001_ $$0P:(DE-HGF)0$$aZauner, Florian B$$b1
000878252 7001_ $$0P:(DE-HGF)0$$aSoh, Wai Tuck$$b2
000878252 7001_ $$0P:(DE-Juel1)167325$$aDemir, Fatih$$b3
000878252 7001_ $$0P:(DE-HGF)0$$aDahms, Sven O.$$b4
000878252 7001_ $$0P:(DE-HGF)0$$aCabrele, Chiara$$b5
000878252 7001_ $$0P:(DE-Juel1)162356$$aHuesgen, Pitter F.$$b6
000878252 7001_ $$00000-0002-6089-3045$$aBrandstetter, Hans$$b7$$eCorresponding author
000878252 773__ $$0PERI:(DE-600)1474604-9$$a10.1074/jbc.RA120.014478$$gp. jbc.RA120.014478 -$$p13047-13064$$tThe journal of biological chemistry$$v295$$x1083-351X$$y2020
000878252 8564_ $$uhttps://juser.fz-juelich.de/record/878252/files/J.%20Biol.%20Chem.-2020-Dall-13047-64.pdf$$yOpenAccess
000878252 8564_ $$uhttps://juser.fz-juelich.de/record/878252/files/merged_revision.pdf$$yOpenAccess
000878252 8564_ $$uhttps://juser.fz-juelich.de/record/878252/files/merged_revision.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878252 8564_ $$uhttps://juser.fz-juelich.de/record/878252/files/J.%20Biol.%20Chem.-2020-Dall-13047-64.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878252 909CO $$ooai:juser.fz-juelich.de:878252$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000878252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167325$$aForschungszentrum Jülich$$b3$$kFZJ
000878252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162356$$aForschungszentrum Jülich$$b6$$kFZJ
000878252 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000878252 9141_ $$y2020
000878252 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOL CHEM : 2018$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-03
000878252 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878252 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878252 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-03
000878252 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000878252 920__ $$lyes
000878252 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x0
000878252 980__ $$ajournal
000878252 980__ $$aVDB
000878252 980__ $$aUNRESTRICTED
000878252 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000878252 9801_ $$aFullTexts